基于时序卷积神经网络的多尺度时空负荷分解

IF 4 4区 工程技术 Q3 ENERGY & FUELS
Shuangyuan Wang, Ao Wang, Yurong Zhang, Huaiqi Xue, Zhiyuan Yao
{"title":"基于时序卷积神经网络的多尺度时空负荷分解","authors":"Shuangyuan Wang,&nbsp;Ao Wang,&nbsp;Yurong Zhang,&nbsp;Huaiqi Xue,&nbsp;Zhiyuan Yao","doi":"10.1007/s12053-025-10369-3","DOIUrl":null,"url":null,"abstract":"<div><p>To address the limitations of existing Non-Intrusive Load Monitoring (NILM) methods in capturing the multi-scale variability and spatiotemporal dependencies of appliance power consumption, this paper proposes a novel progressive temporal convolutional architecture, ChronoFuse-TCN. The proposed model adopts a multi-stage feature extraction strategy to progressively enhances its ability to represent and interpret appliance-level load patterns. By combining dynamic multi-scale modeling, long-range temporal context encoding, and spatiotemporal attention mechanisms, the proposed approach enables more effective separation of overlapping and dynamic power signals. Furthermore, cross-stage feature integration is employed to enrich the hierarchical representation of load features. Experimental results on the UK-DALE dataset show that ChronoFuse-TCN achieves significantly lower disaggregation error compared to state-of-the-art baselines, demonstrating its effectiveness and generalization capability in complex NILM scenarios.</p></div>","PeriodicalId":537,"journal":{"name":"Energy Efficiency","volume":"18 7","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ChronoFuse-TCN: A progressive temporal convolutional network for multi-scale and spatiotemporal load disaggregation\",\"authors\":\"Shuangyuan Wang,&nbsp;Ao Wang,&nbsp;Yurong Zhang,&nbsp;Huaiqi Xue,&nbsp;Zhiyuan Yao\",\"doi\":\"10.1007/s12053-025-10369-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To address the limitations of existing Non-Intrusive Load Monitoring (NILM) methods in capturing the multi-scale variability and spatiotemporal dependencies of appliance power consumption, this paper proposes a novel progressive temporal convolutional architecture, ChronoFuse-TCN. The proposed model adopts a multi-stage feature extraction strategy to progressively enhances its ability to represent and interpret appliance-level load patterns. By combining dynamic multi-scale modeling, long-range temporal context encoding, and spatiotemporal attention mechanisms, the proposed approach enables more effective separation of overlapping and dynamic power signals. Furthermore, cross-stage feature integration is employed to enrich the hierarchical representation of load features. Experimental results on the UK-DALE dataset show that ChronoFuse-TCN achieves significantly lower disaggregation error compared to state-of-the-art baselines, demonstrating its effectiveness and generalization capability in complex NILM scenarios.</p></div>\",\"PeriodicalId\":537,\"journal\":{\"name\":\"Energy Efficiency\",\"volume\":\"18 7\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Efficiency\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12053-025-10369-3\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Efficiency","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12053-025-10369-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

为了解决现有非侵入式负载监测(NILM)方法在捕获家电功耗的多尺度变异性和时空依赖性方面的局限性,本文提出了一种新的渐进式时间卷积架构ChronoFuse-TCN。该模型采用多阶段特征提取策略,逐步增强其表示和解释设备级负载模式的能力。该方法结合动态多尺度建模、远程时间上下文编码和时空注意机制,能够更有效地分离重叠和动态功率信号。此外,采用跨阶段特征集成,丰富了负载特征的层次表示。在UK-DALE数据集上的实验结果表明,与最先进的基线相比,ChronoFuse-TCN的解聚误差显著降低,证明了其在复杂NILM场景下的有效性和泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ChronoFuse-TCN: A progressive temporal convolutional network for multi-scale and spatiotemporal load disaggregation

To address the limitations of existing Non-Intrusive Load Monitoring (NILM) methods in capturing the multi-scale variability and spatiotemporal dependencies of appliance power consumption, this paper proposes a novel progressive temporal convolutional architecture, ChronoFuse-TCN. The proposed model adopts a multi-stage feature extraction strategy to progressively enhances its ability to represent and interpret appliance-level load patterns. By combining dynamic multi-scale modeling, long-range temporal context encoding, and spatiotemporal attention mechanisms, the proposed approach enables more effective separation of overlapping and dynamic power signals. Furthermore, cross-stage feature integration is employed to enrich the hierarchical representation of load features. Experimental results on the UK-DALE dataset show that ChronoFuse-TCN achieves significantly lower disaggregation error compared to state-of-the-art baselines, demonstrating its effectiveness and generalization capability in complex NILM scenarios.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Efficiency
Energy Efficiency ENERGY & FUELS-ENERGY & FUELS
CiteScore
5.80
自引率
6.50%
发文量
59
审稿时长
>12 weeks
期刊介绍: The journal Energy Efficiency covers wide-ranging aspects of energy efficiency in the residential, tertiary, industrial and transport sectors. Coverage includes a number of different topics and disciplines including energy efficiency policies at local, regional, national and international levels; long term impact of energy efficiency; technologies to improve energy efficiency; consumer behavior and the dynamics of consumption; socio-economic impacts of energy efficiency measures; energy efficiency as a virtual utility; transportation issues; building issues; energy management systems and energy services; energy planning and risk assessment; energy efficiency in developing countries and economies in transition; non-energy benefits of energy efficiency and opportunities for policy integration; energy education and training, and emerging technologies. See Aims and Scope for more details.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信