R. Sivaraman, H. Naresh Kumar, D. Muralidharan, R. Muthaiah, V. S. Shankar Sriram
{"title":"面向鲁棒真随机数生成:解决双熵源设计中的漏洞","authors":"R. Sivaraman, H. Naresh Kumar, D. Muralidharan, R. Muthaiah, V. S. Shankar Sriram","doi":"10.1007/s10470-025-02488-9","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, Chen et al. introduced a dynamic dual entropy source-assisted True Random Number Generator (TRNG) implemented on a Field Programmable Gate Array (FPGA). They asserted that their design achieved superior true randomness and higher throughput. This paper comprehensively analyses Chen et al.‘s TRNG [1], identifying potential vulnerabilities. Chen et al. employed a Multiplexer Ring Oscillator (MRO) as the entropy source for generating true random numbers. This MRO leverages dual entropy sources—metastability and clock jitter—to create true randomness. By exploiting the weaknesses inherent in the MRO, we critically examine the results and validation of Chen et al.‘s TRNG. Despite the TRNG’s minimal hardware footprint on the AMD-Xilinx Artix-7 FPGA—utilizing only 10 number of LUTs, 2 number of DFFs, and 1 unit of MUX—and its impressive bit generation rate of 300 Mbps, it fails to produce adequate randomness. This inadequacy is evident when evaluated against standard metrics such as Shannon Entropy, Autocorrelation, and NIST SP 800 − 22. To address these deficiencies, we propose enhancing Chen et al.‘s TRNG, aimed at improving randomness without altering the entropy source, through lightweight post-processing. This approach yielded an 85.71% improvement in randomness after four rounds of post-processing. However, this enhancement significantly reduces throughput by a factor of ½. In conclusion, while the TRNG by Chen et al. demonstrates promising features, it necessitates a robust entropy source with a multi-ring structure rather than the dual-ring MRO for optimal performance.</p></div>","PeriodicalId":7827,"journal":{"name":"Analog Integrated Circuits and Signal Processing","volume":"125 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards robust true random number generation: addressing vulnerabilities in dual entropy source design\",\"authors\":\"R. Sivaraman, H. Naresh Kumar, D. Muralidharan, R. Muthaiah, V. S. Shankar Sriram\",\"doi\":\"10.1007/s10470-025-02488-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recently, Chen et al. introduced a dynamic dual entropy source-assisted True Random Number Generator (TRNG) implemented on a Field Programmable Gate Array (FPGA). They asserted that their design achieved superior true randomness and higher throughput. This paper comprehensively analyses Chen et al.‘s TRNG [1], identifying potential vulnerabilities. Chen et al. employed a Multiplexer Ring Oscillator (MRO) as the entropy source for generating true random numbers. This MRO leverages dual entropy sources—metastability and clock jitter—to create true randomness. By exploiting the weaknesses inherent in the MRO, we critically examine the results and validation of Chen et al.‘s TRNG. Despite the TRNG’s minimal hardware footprint on the AMD-Xilinx Artix-7 FPGA—utilizing only 10 number of LUTs, 2 number of DFFs, and 1 unit of MUX—and its impressive bit generation rate of 300 Mbps, it fails to produce adequate randomness. This inadequacy is evident when evaluated against standard metrics such as Shannon Entropy, Autocorrelation, and NIST SP 800 − 22. To address these deficiencies, we propose enhancing Chen et al.‘s TRNG, aimed at improving randomness without altering the entropy source, through lightweight post-processing. This approach yielded an 85.71% improvement in randomness after four rounds of post-processing. However, this enhancement significantly reduces throughput by a factor of ½. In conclusion, while the TRNG by Chen et al. demonstrates promising features, it necessitates a robust entropy source with a multi-ring structure rather than the dual-ring MRO for optimal performance.</p></div>\",\"PeriodicalId\":7827,\"journal\":{\"name\":\"Analog Integrated Circuits and Signal Processing\",\"volume\":\"125 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analog Integrated Circuits and Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10470-025-02488-9\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analog Integrated Circuits and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10470-025-02488-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Towards robust true random number generation: addressing vulnerabilities in dual entropy source design
Recently, Chen et al. introduced a dynamic dual entropy source-assisted True Random Number Generator (TRNG) implemented on a Field Programmable Gate Array (FPGA). They asserted that their design achieved superior true randomness and higher throughput. This paper comprehensively analyses Chen et al.‘s TRNG [1], identifying potential vulnerabilities. Chen et al. employed a Multiplexer Ring Oscillator (MRO) as the entropy source for generating true random numbers. This MRO leverages dual entropy sources—metastability and clock jitter—to create true randomness. By exploiting the weaknesses inherent in the MRO, we critically examine the results and validation of Chen et al.‘s TRNG. Despite the TRNG’s minimal hardware footprint on the AMD-Xilinx Artix-7 FPGA—utilizing only 10 number of LUTs, 2 number of DFFs, and 1 unit of MUX—and its impressive bit generation rate of 300 Mbps, it fails to produce adequate randomness. This inadequacy is evident when evaluated against standard metrics such as Shannon Entropy, Autocorrelation, and NIST SP 800 − 22. To address these deficiencies, we propose enhancing Chen et al.‘s TRNG, aimed at improving randomness without altering the entropy source, through lightweight post-processing. This approach yielded an 85.71% improvement in randomness after four rounds of post-processing. However, this enhancement significantly reduces throughput by a factor of ½. In conclusion, while the TRNG by Chen et al. demonstrates promising features, it necessitates a robust entropy source with a multi-ring structure rather than the dual-ring MRO for optimal performance.
期刊介绍:
Analog Integrated Circuits and Signal Processing is an archival peer reviewed journal dedicated to the design and application of analog, radio frequency (RF), and mixed signal integrated circuits (ICs) as well as signal processing circuits and systems. It features both new research results and tutorial views and reflects the large volume of cutting-edge research activity in the worldwide field today.
A partial list of topics includes analog and mixed signal interface circuits and systems; analog and RFIC design; data converters; active-RC, switched-capacitor, and continuous-time integrated filters; mixed analog/digital VLSI systems; wireless radio transceivers; clock and data recovery circuits; and high speed optoelectronic circuits and systems.