优化的网格结构柔性EIT触觉重构与分类传感器

IF 5.9 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Huazhi Dong;Sihao Teng;Xu Han;Xiaopeng Wu;Francesco Giorgio-Serchi;Yunjie Yang
{"title":"优化的网格结构柔性EIT触觉重构与分类传感器","authors":"Huazhi Dong;Sihao Teng;Xu Han;Xiaopeng Wu;Francesco Giorgio-Serchi;Yunjie Yang","doi":"10.1109/TIM.2025.3604919","DOIUrl":null,"url":null,"abstract":"Flexible electrical impedance tomography (EIT) offers a promising alternative to traditional tactile sensing approaches, enabling low-cost, scalable, and deformable sensor designs. Here, we propose an optimized lattice-structured flexible EIT tactile sensor incorporating a hydrogel-based conductive layer, systematically designed through 3-D coupling field simulations (3D-CFSs) to optimize structural parameters for enhanced sensitivity and robustness. By tuning the lattice channel width and conductive layer thickness, we achieve significant improvements in tactile reconstruction quality and classification performance. Experimental results demonstrate high-quality tactile reconstruction with correlation coefficients (CCs) up to 0.9275, peak signal-to-noise ratios (PSNRs) reaching 29.0303 dB, and structural similarity indexes up to 0.9660, while maintaining low relative errors down to 0.3798. Furthermore, the optimized sensor accurately classifies 12 distinct tactile stimuli with an accuracy reaching 99.6%. These results highlight the potential of simulation-guided structural optimization for advancing flexible EIT-based tactile sensors toward practical applications in wearable systems, robotics, and human–machine interfaces (HMIs). All data are publicly available in Edinburgh DataShare with the identifier <uri>https://doi.org/10.7488/ds/7982</uri>","PeriodicalId":13341,"journal":{"name":"IEEE Transactions on Instrumentation and Measurement","volume":"74 ","pages":"1-9"},"PeriodicalIF":5.9000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized Lattice-Structured Flexible EIT Sensor for Tactile Reconstruction and Classification\",\"authors\":\"Huazhi Dong;Sihao Teng;Xu Han;Xiaopeng Wu;Francesco Giorgio-Serchi;Yunjie Yang\",\"doi\":\"10.1109/TIM.2025.3604919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flexible electrical impedance tomography (EIT) offers a promising alternative to traditional tactile sensing approaches, enabling low-cost, scalable, and deformable sensor designs. Here, we propose an optimized lattice-structured flexible EIT tactile sensor incorporating a hydrogel-based conductive layer, systematically designed through 3-D coupling field simulations (3D-CFSs) to optimize structural parameters for enhanced sensitivity and robustness. By tuning the lattice channel width and conductive layer thickness, we achieve significant improvements in tactile reconstruction quality and classification performance. Experimental results demonstrate high-quality tactile reconstruction with correlation coefficients (CCs) up to 0.9275, peak signal-to-noise ratios (PSNRs) reaching 29.0303 dB, and structural similarity indexes up to 0.9660, while maintaining low relative errors down to 0.3798. Furthermore, the optimized sensor accurately classifies 12 distinct tactile stimuli with an accuracy reaching 99.6%. These results highlight the potential of simulation-guided structural optimization for advancing flexible EIT-based tactile sensors toward practical applications in wearable systems, robotics, and human–machine interfaces (HMIs). All data are publicly available in Edinburgh DataShare with the identifier <uri>https://doi.org/10.7488/ds/7982</uri>\",\"PeriodicalId\":13341,\"journal\":{\"name\":\"IEEE Transactions on Instrumentation and Measurement\",\"volume\":\"74 \",\"pages\":\"1-9\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Instrumentation and Measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11146663/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Instrumentation and Measurement","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11146663/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

柔性电阻抗断层扫描(EIT)为传统的触觉传感方法提供了一个有前途的替代方案,实现了低成本、可扩展和可变形的传感器设计。在此,我们提出了一种优化的网格结构柔性EIT触觉传感器,该传感器包含基于水凝胶的导电层,通过三维耦合场模拟(3D-CFSs)进行系统设计,优化结构参数,以提高灵敏度和鲁棒性。通过调整晶格通道宽度和导电层厚度,我们在触觉重建质量和分类性能上取得了显著的改善。实验结果表明,高质量的触觉重建,相关系数(cc)可达0.9275,峰值信噪比(PSNRs)可达29.0303 dB,结构相似度指数可达0.9660,相对误差低至0.3798。此外,优化后的传感器可以准确地对12种不同的触觉刺激进行分类,准确率达到99.6%。这些结果突出了仿真引导结构优化的潜力,可以将基于eit的柔性触觉传感器推进到可穿戴系统、机器人和人机界面(hmi)的实际应用中。所有数据都在爱丁堡数据共享中公开提供,标识符为https://doi.org/10.7488/ds/7982
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimized Lattice-Structured Flexible EIT Sensor for Tactile Reconstruction and Classification
Flexible electrical impedance tomography (EIT) offers a promising alternative to traditional tactile sensing approaches, enabling low-cost, scalable, and deformable sensor designs. Here, we propose an optimized lattice-structured flexible EIT tactile sensor incorporating a hydrogel-based conductive layer, systematically designed through 3-D coupling field simulations (3D-CFSs) to optimize structural parameters for enhanced sensitivity and robustness. By tuning the lattice channel width and conductive layer thickness, we achieve significant improvements in tactile reconstruction quality and classification performance. Experimental results demonstrate high-quality tactile reconstruction with correlation coefficients (CCs) up to 0.9275, peak signal-to-noise ratios (PSNRs) reaching 29.0303 dB, and structural similarity indexes up to 0.9660, while maintaining low relative errors down to 0.3798. Furthermore, the optimized sensor accurately classifies 12 distinct tactile stimuli with an accuracy reaching 99.6%. These results highlight the potential of simulation-guided structural optimization for advancing flexible EIT-based tactile sensors toward practical applications in wearable systems, robotics, and human–machine interfaces (HMIs). All data are publicly available in Edinburgh DataShare with the identifier https://doi.org/10.7488/ds/7982
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Instrumentation and Measurement
IEEE Transactions on Instrumentation and Measurement 工程技术-工程:电子与电气
CiteScore
9.00
自引率
23.20%
发文量
1294
审稿时长
3.9 months
期刊介绍: Papers are sought that address innovative solutions to the development and use of electrical and electronic instruments and equipment to measure, monitor and/or record physical phenomena for the purpose of advancing measurement science, methods, functionality and applications. The scope of these papers may encompass: (1) theory, methodology, and practice of measurement; (2) design, development and evaluation of instrumentation and measurement systems and components used in generating, acquiring, conditioning and processing signals; (3) analysis, representation, display, and preservation of the information obtained from a set of measurements; and (4) scientific and technical support to establishment and maintenance of technical standards in the field of Instrumentation and Measurement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信