可控恶劣天气条件下移动自由空间光通信系统基于测量的评估

IF 5.9 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Siwoong Park;Chan Il Yeo;Young Soon Heo;Hyoung-Jun Park
{"title":"可控恶劣天气条件下移动自由空间光通信系统基于测量的评估","authors":"Siwoong Park;Chan Il Yeo;Young Soon Heo;Hyoung-Jun Park","doi":"10.1109/TIM.2025.3606065","DOIUrl":null,"url":null,"abstract":"Free-space optical communication (FSOC) provides secure, high-speed connectivity essential for modern networks, but is highly susceptible to severe weather-induced attenuation. This study evaluates a full-duplex mobile FSOC system under controlled heavy rainfall and thick fog using the advanced facilities at the Yeoncheon SOC Demonstration Research Center. Experimental results confirm stable 2.3-Gb/s data transmission at 35-mm/h rainfall and 10-m visibility, demonstrating system resilience. Comparative analysis with existing weather attenuation models reveals their significant limitations, especially under extreme conditions, highlighting the need for model refinement. These findings offer valuable insights for advancing FSOC performance modeling and support the deployment of FSOC in next-generation communication infrastructures, including mobile platforms, smart cities, and disaster recovery networks.","PeriodicalId":13341,"journal":{"name":"IEEE Transactions on Instrumentation and Measurement","volume":"74 ","pages":"1-16"},"PeriodicalIF":5.9000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measurement-Based Evaluation of a Mobile Free-Space Optical Communication System Under Controlled Severe Weather Conditions\",\"authors\":\"Siwoong Park;Chan Il Yeo;Young Soon Heo;Hyoung-Jun Park\",\"doi\":\"10.1109/TIM.2025.3606065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Free-space optical communication (FSOC) provides secure, high-speed connectivity essential for modern networks, but is highly susceptible to severe weather-induced attenuation. This study evaluates a full-duplex mobile FSOC system under controlled heavy rainfall and thick fog using the advanced facilities at the Yeoncheon SOC Demonstration Research Center. Experimental results confirm stable 2.3-Gb/s data transmission at 35-mm/h rainfall and 10-m visibility, demonstrating system resilience. Comparative analysis with existing weather attenuation models reveals their significant limitations, especially under extreme conditions, highlighting the need for model refinement. These findings offer valuable insights for advancing FSOC performance modeling and support the deployment of FSOC in next-generation communication infrastructures, including mobile platforms, smart cities, and disaster recovery networks.\",\"PeriodicalId\":13341,\"journal\":{\"name\":\"IEEE Transactions on Instrumentation and Measurement\",\"volume\":\"74 \",\"pages\":\"1-16\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Instrumentation and Measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11151672/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Instrumentation and Measurement","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11151672/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

自由空间光通信(FSOC)为现代网络提供了安全、高速的连接,但极易受到恶劣天气引起的衰减的影响。本研究利用涟川SOC示范研究中心的先进设施,评估了受控强降雨和浓雾下的全双工移动FSOC系统。实验结果证实,在35毫米/小时的降雨量和10米的能见度下,数据传输稳定在2.3 gb /s,显示了系统的弹性。与现有天气衰减模式的对比分析揭示了其显著的局限性,特别是在极端条件下,突出了模式改进的必要性。这些发现为推进FSOC性能建模提供了有价值的见解,并支持FSOC在下一代通信基础设施(包括移动平台、智慧城市和灾难恢复网络)中的部署。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measurement-Based Evaluation of a Mobile Free-Space Optical Communication System Under Controlled Severe Weather Conditions
Free-space optical communication (FSOC) provides secure, high-speed connectivity essential for modern networks, but is highly susceptible to severe weather-induced attenuation. This study evaluates a full-duplex mobile FSOC system under controlled heavy rainfall and thick fog using the advanced facilities at the Yeoncheon SOC Demonstration Research Center. Experimental results confirm stable 2.3-Gb/s data transmission at 35-mm/h rainfall and 10-m visibility, demonstrating system resilience. Comparative analysis with existing weather attenuation models reveals their significant limitations, especially under extreme conditions, highlighting the need for model refinement. These findings offer valuable insights for advancing FSOC performance modeling and support the deployment of FSOC in next-generation communication infrastructures, including mobile platforms, smart cities, and disaster recovery networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Instrumentation and Measurement
IEEE Transactions on Instrumentation and Measurement 工程技术-工程:电子与电气
CiteScore
9.00
自引率
23.20%
发文量
1294
审稿时长
3.9 months
期刊介绍: Papers are sought that address innovative solutions to the development and use of electrical and electronic instruments and equipment to measure, monitor and/or record physical phenomena for the purpose of advancing measurement science, methods, functionality and applications. The scope of these papers may encompass: (1) theory, methodology, and practice of measurement; (2) design, development and evaluation of instrumentation and measurement systems and components used in generating, acquiring, conditioning and processing signals; (3) analysis, representation, display, and preservation of the information obtained from a set of measurements; and (4) scientific and technical support to establishment and maintenance of technical standards in the field of Instrumentation and Measurement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信