具有非局部竞争和记忆扩散的松材萎蔫病防治模型动力学研究

IF 1.8 4区 数学 Q2 BIOLOGY
Yuting Ding , Pei Yu
{"title":"具有非局部竞争和记忆扩散的松材萎蔫病防治模型动力学研究","authors":"Yuting Ding ,&nbsp;Pei Yu","doi":"10.1016/j.mbs.2025.109524","DOIUrl":null,"url":null,"abstract":"<div><div>Pine wilt disease (PWD) is mainly spread by Monochamus alternatus (in short, M. alternatus). Woodpecker, as the natural predator of M. alternatus, is considered for biological prevention and controlling the PWD. In this paper, we propose a new M. alternatus-woodpecker model with nonlocal competition and memory-based diffusion, which makes the model more realistic for the PWD control. We focus on the dynamics and bifurcations of the model with various combinations of the memory diffusion and nonlocal competition. It is shown that the nonlocal competition can only cause the stable constant steady state to lose stability, while the memory-based diffusion can induce unstable spatially inhomogeneous periodic solutions due to Hopf bifurcation. Consequently, we can explain the spatiotemporal heterogeneity problem in ecology by innovatively using mathematical modelling. Normal form theory with the multiple time scales method is applied to particularly consider Hopf bifurcation, showing complex dynamical behaviours involving various oscillating motions. Finally, numerical simulations are presented with the parameter values chosen from the real forest data of Yuan’an County, Hubei Province, China, confirming the theoretical results of the spatiotemporal heterogeneity of forest diseases and pests, as well as the PWD control.</div></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"389 ","pages":"Article 109524"},"PeriodicalIF":1.8000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of a pine wilt disease control model with nonlocal competition and memory diffusion\",\"authors\":\"Yuting Ding ,&nbsp;Pei Yu\",\"doi\":\"10.1016/j.mbs.2025.109524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Pine wilt disease (PWD) is mainly spread by Monochamus alternatus (in short, M. alternatus). Woodpecker, as the natural predator of M. alternatus, is considered for biological prevention and controlling the PWD. In this paper, we propose a new M. alternatus-woodpecker model with nonlocal competition and memory-based diffusion, which makes the model more realistic for the PWD control. We focus on the dynamics and bifurcations of the model with various combinations of the memory diffusion and nonlocal competition. It is shown that the nonlocal competition can only cause the stable constant steady state to lose stability, while the memory-based diffusion can induce unstable spatially inhomogeneous periodic solutions due to Hopf bifurcation. Consequently, we can explain the spatiotemporal heterogeneity problem in ecology by innovatively using mathematical modelling. Normal form theory with the multiple time scales method is applied to particularly consider Hopf bifurcation, showing complex dynamical behaviours involving various oscillating motions. Finally, numerical simulations are presented with the parameter values chosen from the real forest data of Yuan’an County, Hubei Province, China, confirming the theoretical results of the spatiotemporal heterogeneity of forest diseases and pests, as well as the PWD control.</div></div>\",\"PeriodicalId\":51119,\"journal\":{\"name\":\"Mathematical Biosciences\",\"volume\":\"389 \",\"pages\":\"Article 109524\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Biosciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025556425001506\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556425001506","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

松材萎蔫病(PWD)的主要传播媒介是交替野鼠(Monochamus alternatus,简称M. alternatus)。啄木鸟作为白桦尺蠖的天敌,被认为是防治白桦尺蠖病的生物手段。本文提出了一种新的具有非局部竞争和基于记忆的扩散的替代啄木鸟模型,使模型更适合于PWD控制。我们重点研究了记忆扩散和非局部竞争的各种组合模型的动力学和分岔。结果表明,非局部竞争只会导致稳定的恒稳态失去稳定性,而基于记忆的扩散则会由于Hopf分岔而导致不稳定的空间非齐次周期解。因此,我们可以创新地利用数学模型来解释生态学的时空异质性问题。应用范式理论和多时间尺度方法特别考虑Hopf分岔,表现出涉及各种振荡运动的复杂动力学行为。最后,采用湖北元安县森林实测数据进行数值模拟,验证了森林病虫害时空异质性的理论结果,以及森林病虫害的防治效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamics of a pine wilt disease control model with nonlocal competition and memory diffusion
Pine wilt disease (PWD) is mainly spread by Monochamus alternatus (in short, M. alternatus). Woodpecker, as the natural predator of M. alternatus, is considered for biological prevention and controlling the PWD. In this paper, we propose a new M. alternatus-woodpecker model with nonlocal competition and memory-based diffusion, which makes the model more realistic for the PWD control. We focus on the dynamics and bifurcations of the model with various combinations of the memory diffusion and nonlocal competition. It is shown that the nonlocal competition can only cause the stable constant steady state to lose stability, while the memory-based diffusion can induce unstable spatially inhomogeneous periodic solutions due to Hopf bifurcation. Consequently, we can explain the spatiotemporal heterogeneity problem in ecology by innovatively using mathematical modelling. Normal form theory with the multiple time scales method is applied to particularly consider Hopf bifurcation, showing complex dynamical behaviours involving various oscillating motions. Finally, numerical simulations are presented with the parameter values chosen from the real forest data of Yuan’an County, Hubei Province, China, confirming the theoretical results of the spatiotemporal heterogeneity of forest diseases and pests, as well as the PWD control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Biosciences
Mathematical Biosciences 生物-生物学
CiteScore
7.50
自引率
2.30%
发文量
67
审稿时长
18 days
期刊介绍: Mathematical Biosciences publishes work providing new concepts or new understanding of biological systems using mathematical models, or methodological articles likely to find application to multiple biological systems. Papers are expected to present a major research finding of broad significance for the biological sciences, or mathematical biology. Mathematical Biosciences welcomes original research articles, letters, reviews and perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信