TEA-Watershed:用于动态工业流中实时粒度测量的时间增强自适应分水岭框架

IF 7.9 Q1 ENGINEERING, MULTIDISCIPLINARY
Fusheng Niu , Zhiheng Nie , Jinxia Zhang , Yaowen Xing , Xinwei Wang , Yanpeng Wang , Jianfeng Shi , Jiahui Wu
{"title":"TEA-Watershed:用于动态工业流中实时粒度测量的时间增强自适应分水岭框架","authors":"Fusheng Niu ,&nbsp;Zhiheng Nie ,&nbsp;Jinxia Zhang ,&nbsp;Yaowen Xing ,&nbsp;Xinwei Wang ,&nbsp;Yanpeng Wang ,&nbsp;Jianfeng Shi ,&nbsp;Jiahui Wu","doi":"10.1016/j.rineng.2025.107173","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate real-time particle-size measurement in rapid, illumination-varying industrial flows is hindered by motion blur, inter-particle adhesion, and uneven grayscale distributions. This study introduces TEA-Watershed (Temporal-Enhanced Adaptive Watershed), a training-free framework that delivers robust in-line metrology without interrupting production. The algorithm fuses consecutive frames to reinforce edges, integrates motion-aware parameter optimization with adaptive Otsu thresholding inside a watershed pipeline, and iteratively refines segmentation through trajectory-based feedback. An unsupervised K-Means module further groups particles by morphology, eliminating manual annotation while maintaining calibration under changing flow conditions. Validation on 2–15 mm coal and iron-ore streams achieved a mean Intersection-over-Union of 89.1 % and pixel accuracy of 96.2 %. For metrological performance, the system recorded a mean absolute size error of 3.8 % and a repeatability coefficient of variation below 2.5 % across 100 replicates. Processing throughput reached 22 frames s⁻¹(45 ms per frame), enabling continuous monitoring. Correlation with ISO 2591 sieve analysis confirmed high reliability (R² = 0.98). Requiring only modest computational resources and no learned weights, TEA-Watershed provides quantified uncertainty within industrial tolerances, offering a practical, scalable solution for particle-size measurement, screening-efficiency assessment, and flow diagnostics in mineral processing, coal beneficiation, and powder-handling operations.</div></div>","PeriodicalId":36919,"journal":{"name":"Results in Engineering","volume":"28 ","pages":"Article 107173"},"PeriodicalIF":7.9000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TEA-Watershed:A temporal-enhanced adaptive watershed framework for real-time particle size measurement in dynamic industrial flows\",\"authors\":\"Fusheng Niu ,&nbsp;Zhiheng Nie ,&nbsp;Jinxia Zhang ,&nbsp;Yaowen Xing ,&nbsp;Xinwei Wang ,&nbsp;Yanpeng Wang ,&nbsp;Jianfeng Shi ,&nbsp;Jiahui Wu\",\"doi\":\"10.1016/j.rineng.2025.107173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate real-time particle-size measurement in rapid, illumination-varying industrial flows is hindered by motion blur, inter-particle adhesion, and uneven grayscale distributions. This study introduces TEA-Watershed (Temporal-Enhanced Adaptive Watershed), a training-free framework that delivers robust in-line metrology without interrupting production. The algorithm fuses consecutive frames to reinforce edges, integrates motion-aware parameter optimization with adaptive Otsu thresholding inside a watershed pipeline, and iteratively refines segmentation through trajectory-based feedback. An unsupervised K-Means module further groups particles by morphology, eliminating manual annotation while maintaining calibration under changing flow conditions. Validation on 2–15 mm coal and iron-ore streams achieved a mean Intersection-over-Union of 89.1 % and pixel accuracy of 96.2 %. For metrological performance, the system recorded a mean absolute size error of 3.8 % and a repeatability coefficient of variation below 2.5 % across 100 replicates. Processing throughput reached 22 frames s⁻¹(45 ms per frame), enabling continuous monitoring. Correlation with ISO 2591 sieve analysis confirmed high reliability (R² = 0.98). Requiring only modest computational resources and no learned weights, TEA-Watershed provides quantified uncertainty within industrial tolerances, offering a practical, scalable solution for particle-size measurement, screening-efficiency assessment, and flow diagnostics in mineral processing, coal beneficiation, and powder-handling operations.</div></div>\",\"PeriodicalId\":36919,\"journal\":{\"name\":\"Results in Engineering\",\"volume\":\"28 \",\"pages\":\"Article 107173\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590123025032281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590123025032281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在快速、光照变化的工业流中,精确的实时粒径测量受到运动模糊、颗粒间粘附和灰度分布不均匀的阻碍。本研究介绍了TEA-Watershed(时间增强自适应分水岭),这是一个无需培训的框架,可在不中断生产的情况下提供强大的在线计量。该算法融合连续帧增强边缘,在分水岭管道内融合运动感知参数优化和自适应Otsu阈值,并通过基于轨迹的反馈迭代细化分割。无监督的K-Means模块通过形态进一步分组颗粒,消除了手动注释,同时在不断变化的流动条件下保持校准。在2-15 mm煤和铁矿流上的验证,平均交叉结合率为89.1%,像元精度为96.2%。在计量性能方面,该系统在100个重复中记录的平均绝对尺寸误差为3.8%,重复性变异系数低于2.5%。处理吞吐量达到22帧(每帧45毫秒),可以持续监控。与ISO 2591筛分分析相关,可靠性高(R²= 0.98)。TEA-Watershed仅需要适度的计算资源,无需学习权重,可在工业公差范围内提供量化的不确定性,为矿物加工,煤炭选矿和粉末处理操作中的粒度测量,筛选效率评估和流动诊断提供实用,可扩展的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TEA-Watershed:A temporal-enhanced adaptive watershed framework for real-time particle size measurement in dynamic industrial flows
Accurate real-time particle-size measurement in rapid, illumination-varying industrial flows is hindered by motion blur, inter-particle adhesion, and uneven grayscale distributions. This study introduces TEA-Watershed (Temporal-Enhanced Adaptive Watershed), a training-free framework that delivers robust in-line metrology without interrupting production. The algorithm fuses consecutive frames to reinforce edges, integrates motion-aware parameter optimization with adaptive Otsu thresholding inside a watershed pipeline, and iteratively refines segmentation through trajectory-based feedback. An unsupervised K-Means module further groups particles by morphology, eliminating manual annotation while maintaining calibration under changing flow conditions. Validation on 2–15 mm coal and iron-ore streams achieved a mean Intersection-over-Union of 89.1 % and pixel accuracy of 96.2 %. For metrological performance, the system recorded a mean absolute size error of 3.8 % and a repeatability coefficient of variation below 2.5 % across 100 replicates. Processing throughput reached 22 frames s⁻¹(45 ms per frame), enabling continuous monitoring. Correlation with ISO 2591 sieve analysis confirmed high reliability (R² = 0.98). Requiring only modest computational resources and no learned weights, TEA-Watershed provides quantified uncertainty within industrial tolerances, offering a practical, scalable solution for particle-size measurement, screening-efficiency assessment, and flow diagnostics in mineral processing, coal beneficiation, and powder-handling operations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Engineering
Results in Engineering Engineering-Engineering (all)
CiteScore
5.80
自引率
34.00%
发文量
441
审稿时长
47 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信