功能性植物纳米酶对糖尿病创面微生物代谢和过度炎症微环境的双重调节

IF 10.2 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Shan He , Zhenhao Li , Wenguo Huang , Yujie Peng , Libin Niu , Huangding Wen , Youshan Xv , Shuo Li , Zhiqing Li
{"title":"功能性植物纳米酶对糖尿病创面微生物代谢和过度炎症微环境的双重调节","authors":"Shan He ,&nbsp;Zhenhao Li ,&nbsp;Wenguo Huang ,&nbsp;Yujie Peng ,&nbsp;Libin Niu ,&nbsp;Huangding Wen ,&nbsp;Youshan Xv ,&nbsp;Shuo Li ,&nbsp;Zhiqing Li","doi":"10.1016/j.mtbio.2025.102293","DOIUrl":null,"url":null,"abstract":"<div><div>Chronic wound management demands multifunctional therapeutic strategies that simultaneously address excessive inflammation and oxidative stress. To meet this challenge, we engineered a three-dimensional biomimetic scaffold (CSSTF) by integrating collagen-based thermosensitive hydrogel, a SiO<sub>2</sub>-supported copper single-atom catalyst (Cu-SAC-SE), and tea tree oil-encapsulated liposomes (TTO@Lpo). This composite design enables sustained release of bioactive components, achieving synergistic ROS scavenging, mitochondrial protection, and suppression of NLRP3 inflammasome-mediated pyroptosis. Notably, CSSTF exhibits dual immunomodulatory effects by attenuating neutrophil extracellular trap (NET) formation and shifting macrophage polarization from pro-inflammatory M1 to anti-inflammatory M2 phenotype, thereby mitigating inflammation-associated tissue damage. Parallelly, TTO@Lpo orchestrates microbial remodeling by selectively inhibiting pathogenic bacteria while enriching beneficial commensals, coupled with elevated production of anti-inflammatory metabolites (e.g., short-chain fatty acids), establishing a self-reinforcing \"microbiota-metabolism-inflammation\" regulatory loop. In diabetic murine models, CSSTF significantly accelerated wound closure through coordinated mechanisms: (1) enhanced angiogenesis via VEGF upregulation, (2) NETosis suppression that dampens cytokine storms, and (3) ECM reconstruction facilitated by fibroblast activation. Beyond material innovation, this work pioneers a phyto-bionic therapeutic platform leveraging enzymatic catalysis and microbiome reprogramming, offering a paradigm shift in chronic wound treatment through simultaneous physical barrier restoration and dynamic biological modulation.</div></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"35 ","pages":"Article 102293"},"PeriodicalIF":10.2000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional phyto-nanozymes for dual regulation of microbial metabolism and overinflammation microenvironment in diabetic wound\",\"authors\":\"Shan He ,&nbsp;Zhenhao Li ,&nbsp;Wenguo Huang ,&nbsp;Yujie Peng ,&nbsp;Libin Niu ,&nbsp;Huangding Wen ,&nbsp;Youshan Xv ,&nbsp;Shuo Li ,&nbsp;Zhiqing Li\",\"doi\":\"10.1016/j.mtbio.2025.102293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Chronic wound management demands multifunctional therapeutic strategies that simultaneously address excessive inflammation and oxidative stress. To meet this challenge, we engineered a three-dimensional biomimetic scaffold (CSSTF) by integrating collagen-based thermosensitive hydrogel, a SiO<sub>2</sub>-supported copper single-atom catalyst (Cu-SAC-SE), and tea tree oil-encapsulated liposomes (TTO@Lpo). This composite design enables sustained release of bioactive components, achieving synergistic ROS scavenging, mitochondrial protection, and suppression of NLRP3 inflammasome-mediated pyroptosis. Notably, CSSTF exhibits dual immunomodulatory effects by attenuating neutrophil extracellular trap (NET) formation and shifting macrophage polarization from pro-inflammatory M1 to anti-inflammatory M2 phenotype, thereby mitigating inflammation-associated tissue damage. Parallelly, TTO@Lpo orchestrates microbial remodeling by selectively inhibiting pathogenic bacteria while enriching beneficial commensals, coupled with elevated production of anti-inflammatory metabolites (e.g., short-chain fatty acids), establishing a self-reinforcing \\\"microbiota-metabolism-inflammation\\\" regulatory loop. In diabetic murine models, CSSTF significantly accelerated wound closure through coordinated mechanisms: (1) enhanced angiogenesis via VEGF upregulation, (2) NETosis suppression that dampens cytokine storms, and (3) ECM reconstruction facilitated by fibroblast activation. Beyond material innovation, this work pioneers a phyto-bionic therapeutic platform leveraging enzymatic catalysis and microbiome reprogramming, offering a paradigm shift in chronic wound treatment through simultaneous physical barrier restoration and dynamic biological modulation.</div></div>\",\"PeriodicalId\":18310,\"journal\":{\"name\":\"Materials Today Bio\",\"volume\":\"35 \",\"pages\":\"Article 102293\"},\"PeriodicalIF\":10.2000,\"publicationDate\":\"2025-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Bio\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590006425008634\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Bio","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590006425008634","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

慢性伤口管理需要同时解决过度炎症和氧化应激的多功能治疗策略。为了应对这一挑战,我们设计了一种三维仿生支架(CSSTF),通过整合基于胶原蛋白的热敏水凝胶,二氧化硅负载的铜单原子催化剂(Cu-SAC-SE)和茶树油包覆脂粒(TTO@Lpo)。这种复合设计能够持续释放生物活性成分,实现协同ROS清除、线粒体保护和抑制NLRP3炎症小体介导的焦亡。值得注意的是,CSSTF通过减少中性粒细胞胞外陷阱(NET)的形成和将巨噬细胞极化从促炎M1型转变为抗炎M2型,从而表现出双重免疫调节作用,从而减轻炎症相关的组织损伤。同时,TTO@Lpo通过选择性地抑制致病菌,同时丰富有益的共生菌,加上抗炎代谢物(如短链脂肪酸)的增加,协调微生物重塑,建立一个自我强化的“微生物群-代谢-炎症”调节循环。在糖尿病小鼠模型中,CSSTF通过协调机制显著加速伤口愈合:(1)通过VEGF上调促进血管生成,(2)抑制NETosis,抑制细胞因子风暴,(3)通过成纤维细胞激活促进ECM重建。除了材料创新,这项工作开创了利用酶催化和微生物组重编程的植物仿生治疗平台,通过同时恢复物理屏障和动态生物调节,为慢性伤口治疗提供了范式转变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Functional phyto-nanozymes for dual regulation of microbial metabolism and overinflammation microenvironment in diabetic wound
Chronic wound management demands multifunctional therapeutic strategies that simultaneously address excessive inflammation and oxidative stress. To meet this challenge, we engineered a three-dimensional biomimetic scaffold (CSSTF) by integrating collagen-based thermosensitive hydrogel, a SiO2-supported copper single-atom catalyst (Cu-SAC-SE), and tea tree oil-encapsulated liposomes (TTO@Lpo). This composite design enables sustained release of bioactive components, achieving synergistic ROS scavenging, mitochondrial protection, and suppression of NLRP3 inflammasome-mediated pyroptosis. Notably, CSSTF exhibits dual immunomodulatory effects by attenuating neutrophil extracellular trap (NET) formation and shifting macrophage polarization from pro-inflammatory M1 to anti-inflammatory M2 phenotype, thereby mitigating inflammation-associated tissue damage. Parallelly, TTO@Lpo orchestrates microbial remodeling by selectively inhibiting pathogenic bacteria while enriching beneficial commensals, coupled with elevated production of anti-inflammatory metabolites (e.g., short-chain fatty acids), establishing a self-reinforcing "microbiota-metabolism-inflammation" regulatory loop. In diabetic murine models, CSSTF significantly accelerated wound closure through coordinated mechanisms: (1) enhanced angiogenesis via VEGF upregulation, (2) NETosis suppression that dampens cytokine storms, and (3) ECM reconstruction facilitated by fibroblast activation. Beyond material innovation, this work pioneers a phyto-bionic therapeutic platform leveraging enzymatic catalysis and microbiome reprogramming, offering a paradigm shift in chronic wound treatment through simultaneous physical barrier restoration and dynamic biological modulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
4.90%
发文量
303
审稿时长
30 days
期刊介绍: Materials Today Bio is a multidisciplinary journal that specializes in the intersection between biology and materials science, chemistry, physics, engineering, and medicine. It covers various aspects such as the design and assembly of new structures, their interaction with biological systems, functionalization, bioimaging, therapies, and diagnostics in healthcare. The journal aims to showcase the most significant advancements and discoveries in this field. As part of the Materials Today family, Materials Today Bio provides rigorous peer review, quick decision-making, and high visibility for authors. It is indexed in Scopus, PubMed Central, Emerging Sources, Citation Index (ESCI), and Directory of Open Access Journals (DOAJ).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信