{"title":"农业光伏作物选择:基于国际综述的战略决策模型","authors":"Kedar Mehta, Wilfried Zörner","doi":"10.1016/j.solcom.2025.100143","DOIUrl":null,"url":null,"abstract":"<div><div>Agri-Photovoltaics (Agri-PV) is well known for its dual land use, integrating solar energy generation with agricultural production. This not only optimizes land use but also enhances food and energy security. Since Agri-PV is closely linked with crop cultivation, it is not solely about energy generation but also requires careful consideration of crop suitability within Agri-PV installations. Despite its significance, there is limited information available to guide decision-making for crop selection in Agri-PV systems. Selecting suitable crops remains a complex challenge, as factors such as shading tolerance, water requirements, and economic viability vary across different geographical and climatic conditions. This study develops a novel, review-based decision support model for crop selection in Agri-PV systems, synthesizing international research and case studies to provide a structured framework for decision-making. The model is based on 12 main crop typologies and key parameters such as water use, shading adaptability, crop yield/economic potential, and space requirements, derived from 117 research articles and case studies from 25 countries. By leveraging insights from successful international implementations, the model provides a practical framework for policymakers, farmers, and energy planners to enhance the sustainability and efficiency of Agri-PV projects. Findings suggest that crop selection strategies must align with regional climate conditions and PV system design to maximize synergies between energy and food production. High-value crops that require less space and have higher shade tolerance are more suitable for small-scale or decentralized Agri-PV systems. Future research should focus on advanced modeling techniques, AI-driven optimization, and real-world pilot studies to further refine decision-making in Agri-PV deployment. This study contributes to the growing body of knowledge on Agri-PV systems by providing a novel crop suitability matrix for effective decision-making.</div></div>","PeriodicalId":101173,"journal":{"name":"Solar Compass","volume":"16 ","pages":"Article 100143"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crop selection in Agri-PV: international review based strategic decision-making model\",\"authors\":\"Kedar Mehta, Wilfried Zörner\",\"doi\":\"10.1016/j.solcom.2025.100143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Agri-Photovoltaics (Agri-PV) is well known for its dual land use, integrating solar energy generation with agricultural production. This not only optimizes land use but also enhances food and energy security. Since Agri-PV is closely linked with crop cultivation, it is not solely about energy generation but also requires careful consideration of crop suitability within Agri-PV installations. Despite its significance, there is limited information available to guide decision-making for crop selection in Agri-PV systems. Selecting suitable crops remains a complex challenge, as factors such as shading tolerance, water requirements, and economic viability vary across different geographical and climatic conditions. This study develops a novel, review-based decision support model for crop selection in Agri-PV systems, synthesizing international research and case studies to provide a structured framework for decision-making. The model is based on 12 main crop typologies and key parameters such as water use, shading adaptability, crop yield/economic potential, and space requirements, derived from 117 research articles and case studies from 25 countries. By leveraging insights from successful international implementations, the model provides a practical framework for policymakers, farmers, and energy planners to enhance the sustainability and efficiency of Agri-PV projects. Findings suggest that crop selection strategies must align with regional climate conditions and PV system design to maximize synergies between energy and food production. High-value crops that require less space and have higher shade tolerance are more suitable for small-scale or decentralized Agri-PV systems. Future research should focus on advanced modeling techniques, AI-driven optimization, and real-world pilot studies to further refine decision-making in Agri-PV deployment. This study contributes to the growing body of knowledge on Agri-PV systems by providing a novel crop suitability matrix for effective decision-making.</div></div>\",\"PeriodicalId\":101173,\"journal\":{\"name\":\"Solar Compass\",\"volume\":\"16 \",\"pages\":\"Article 100143\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Compass\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772940025000384\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Compass","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772940025000384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Crop selection in Agri-PV: international review based strategic decision-making model
Agri-Photovoltaics (Agri-PV) is well known for its dual land use, integrating solar energy generation with agricultural production. This not only optimizes land use but also enhances food and energy security. Since Agri-PV is closely linked with crop cultivation, it is not solely about energy generation but also requires careful consideration of crop suitability within Agri-PV installations. Despite its significance, there is limited information available to guide decision-making for crop selection in Agri-PV systems. Selecting suitable crops remains a complex challenge, as factors such as shading tolerance, water requirements, and economic viability vary across different geographical and climatic conditions. This study develops a novel, review-based decision support model for crop selection in Agri-PV systems, synthesizing international research and case studies to provide a structured framework for decision-making. The model is based on 12 main crop typologies and key parameters such as water use, shading adaptability, crop yield/economic potential, and space requirements, derived from 117 research articles and case studies from 25 countries. By leveraging insights from successful international implementations, the model provides a practical framework for policymakers, farmers, and energy planners to enhance the sustainability and efficiency of Agri-PV projects. Findings suggest that crop selection strategies must align with regional climate conditions and PV system design to maximize synergies between energy and food production. High-value crops that require less space and have higher shade tolerance are more suitable for small-scale or decentralized Agri-PV systems. Future research should focus on advanced modeling techniques, AI-driven optimization, and real-world pilot studies to further refine decision-making in Agri-PV deployment. This study contributes to the growing body of knowledge on Agri-PV systems by providing a novel crop suitability matrix for effective decision-making.