可靠报警生成的混合随机-动态框架:基于gmm的概率模式与时间证据融合的集成

IF 3.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Xu Weng , Xiaobin Xu , Xiping Wang , Li Yang , Zhe Zhou
{"title":"可靠报警生成的混合随机-动态框架:基于gmm的概率模式与时间证据融合的集成","authors":"Xu Weng ,&nbsp;Xiaobin Xu ,&nbsp;Xiping Wang ,&nbsp;Li Yang ,&nbsp;Zhe Zhou","doi":"10.1016/j.cherd.2025.08.043","DOIUrl":null,"url":null,"abstract":"<div><div>Industrial alarm systems typically utilize critical process variables for anomaly detection. This paper introduces a probabilistic evidence fusion framework that integrates long-term probabilistic trends with short-term temporal dynamics to enhance robust alarm generation. For modeling long-term probabilistic trends, Gaussian mixture models (GMMs) are employed to estimate baseline probability density functions (PDFs) for normal and abnormal states based on historical data. Online samples are then converted into probabilistic evidence via normalized likelihood comparisons against these baseline PDFs. To address short-term characteristics, a temporal evidence combination mechanism is developed, which dynamically fuses current and historical probabilistic evidence using the evidence reasoning (ER) rule. Alarms are subsequently generated based on the fused results. This dual-scale modeling approach effectively captures both persistent stochastic patterns and transient behaviors, thereby ensuring reliable detection across various operational regimes. Numerical simulations and case studies of motor fault detection validate superior performance of the proposed framework in terms of detection accuracy compared to conventional methods, particularly in handling gradual fault progression and transient disturbances.</div></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":"222 ","pages":"Pages 73-85"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hybrid stochastic-dynamic framework for reliable alarm generation: Integrating GMM-based probability patterns with temporal evidence fusion\",\"authors\":\"Xu Weng ,&nbsp;Xiaobin Xu ,&nbsp;Xiping Wang ,&nbsp;Li Yang ,&nbsp;Zhe Zhou\",\"doi\":\"10.1016/j.cherd.2025.08.043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Industrial alarm systems typically utilize critical process variables for anomaly detection. This paper introduces a probabilistic evidence fusion framework that integrates long-term probabilistic trends with short-term temporal dynamics to enhance robust alarm generation. For modeling long-term probabilistic trends, Gaussian mixture models (GMMs) are employed to estimate baseline probability density functions (PDFs) for normal and abnormal states based on historical data. Online samples are then converted into probabilistic evidence via normalized likelihood comparisons against these baseline PDFs. To address short-term characteristics, a temporal evidence combination mechanism is developed, which dynamically fuses current and historical probabilistic evidence using the evidence reasoning (ER) rule. Alarms are subsequently generated based on the fused results. This dual-scale modeling approach effectively captures both persistent stochastic patterns and transient behaviors, thereby ensuring reliable detection across various operational regimes. Numerical simulations and case studies of motor fault detection validate superior performance of the proposed framework in terms of detection accuracy compared to conventional methods, particularly in handling gradual fault progression and transient disturbances.</div></div>\",\"PeriodicalId\":10019,\"journal\":{\"name\":\"Chemical Engineering Research & Design\",\"volume\":\"222 \",\"pages\":\"Pages 73-85\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Research & Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263876225004630\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Research & Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263876225004630","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

工业报警系统通常利用关键过程变量进行异常检测。本文介绍了一种概率证据融合框架,该框架将长期概率趋势与短期时间动态相结合,以增强鲁棒性报警生成。为了建模长期概率趋势,采用高斯混合模型(GMMs)基于历史数据估计正常和异常状态的基线概率密度函数(pdf)。然后,通过与这些基线pdf进行归一化似然比较,将在线样本转换为概率证据。针对短期特征,提出了一种时间证据组合机制,利用证据推理规则动态融合当前和历史概率证据。随后根据融合结果产生告警。这种双尺度建模方法有效地捕获了持久的随机模式和瞬态行为,从而确保了在各种操作制度下的可靠检测。电机故障检测的数值模拟和案例研究验证了所提出的框架在检测精度方面优于传统方法,特别是在处理渐进故障进展和瞬态干扰方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hybrid stochastic-dynamic framework for reliable alarm generation: Integrating GMM-based probability patterns with temporal evidence fusion
Industrial alarm systems typically utilize critical process variables for anomaly detection. This paper introduces a probabilistic evidence fusion framework that integrates long-term probabilistic trends with short-term temporal dynamics to enhance robust alarm generation. For modeling long-term probabilistic trends, Gaussian mixture models (GMMs) are employed to estimate baseline probability density functions (PDFs) for normal and abnormal states based on historical data. Online samples are then converted into probabilistic evidence via normalized likelihood comparisons against these baseline PDFs. To address short-term characteristics, a temporal evidence combination mechanism is developed, which dynamically fuses current and historical probabilistic evidence using the evidence reasoning (ER) rule. Alarms are subsequently generated based on the fused results. This dual-scale modeling approach effectively captures both persistent stochastic patterns and transient behaviors, thereby ensuring reliable detection across various operational regimes. Numerical simulations and case studies of motor fault detection validate superior performance of the proposed framework in terms of detection accuracy compared to conventional methods, particularly in handling gradual fault progression and transient disturbances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering Research & Design
Chemical Engineering Research & Design 工程技术-工程:化工
CiteScore
6.10
自引率
7.70%
发文量
623
审稿时长
42 days
期刊介绍: ChERD aims to be the principal international journal for publication of high quality, original papers in chemical engineering. Papers showing how research results can be used in chemical engineering design, and accounts of experimental or theoretical research work bringing new perspectives to established principles, highlighting unsolved problems or indicating directions for future research, are particularly welcome. Contributions that deal with new developments in plant or processes and that can be given quantitative expression are encouraged. The journal is especially interested in papers that extend the boundaries of traditional chemical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信