{"title":"基于数据点的叶片型线平滑重构及其特征","authors":"Kadir Kiran","doi":"10.1016/j.tws.2025.113846","DOIUrl":null,"url":null,"abstract":"<div><div>In the current paper, reconstruction and characterization procedures for the blade profile data points are comprehensively presented. For the reconstruction, a single <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-continuous fair Bezier curve fitting algorithm is developed. This algorithm is based on the nonlinear least squares fitting method and it performs fitting and fairing processes concurrently, which eliminates the need for post processing of the reconstructed blade profile. Thus, we are able to accurately represent large number of blade profile data points with maximum 14 control points of a Bezier curve. On the other hand, in the characterization procedure, the reconstructed blade profile camber line, radius distribution and fundamental design parameters (i.e., inlet metal, outlet metal and stagger angles, and chord length) are computed. The implementations and validations of the proposed procedures are completed with data points of various reference blade and airfoil profiles, and a worn aero-engine blade profile data points achieved via a coordinate measuring machine (CMM). The results have shown that the proposed procedures along with their algorithms are quite successful, practical, and powerful for the blade profile reconstruction and characterization. They have great potential as useful tools for the design, analysis, optimization, inspection, and manufacturing of the blades.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"218 ","pages":"Article 113846"},"PeriodicalIF":6.6000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smooth reconstruction of blade profile from data points and its characterization\",\"authors\":\"Kadir Kiran\",\"doi\":\"10.1016/j.tws.2025.113846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the current paper, reconstruction and characterization procedures for the blade profile data points are comprehensively presented. For the reconstruction, a single <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-continuous fair Bezier curve fitting algorithm is developed. This algorithm is based on the nonlinear least squares fitting method and it performs fitting and fairing processes concurrently, which eliminates the need for post processing of the reconstructed blade profile. Thus, we are able to accurately represent large number of blade profile data points with maximum 14 control points of a Bezier curve. On the other hand, in the characterization procedure, the reconstructed blade profile camber line, radius distribution and fundamental design parameters (i.e., inlet metal, outlet metal and stagger angles, and chord length) are computed. The implementations and validations of the proposed procedures are completed with data points of various reference blade and airfoil profiles, and a worn aero-engine blade profile data points achieved via a coordinate measuring machine (CMM). The results have shown that the proposed procedures along with their algorithms are quite successful, practical, and powerful for the blade profile reconstruction and characterization. They have great potential as useful tools for the design, analysis, optimization, inspection, and manufacturing of the blades.</div></div>\",\"PeriodicalId\":49435,\"journal\":{\"name\":\"Thin-Walled Structures\",\"volume\":\"218 \",\"pages\":\"Article 113846\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thin-Walled Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S026382312500936X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026382312500936X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Smooth reconstruction of blade profile from data points and its characterization
In the current paper, reconstruction and characterization procedures for the blade profile data points are comprehensively presented. For the reconstruction, a single -continuous fair Bezier curve fitting algorithm is developed. This algorithm is based on the nonlinear least squares fitting method and it performs fitting and fairing processes concurrently, which eliminates the need for post processing of the reconstructed blade profile. Thus, we are able to accurately represent large number of blade profile data points with maximum 14 control points of a Bezier curve. On the other hand, in the characterization procedure, the reconstructed blade profile camber line, radius distribution and fundamental design parameters (i.e., inlet metal, outlet metal and stagger angles, and chord length) are computed. The implementations and validations of the proposed procedures are completed with data points of various reference blade and airfoil profiles, and a worn aero-engine blade profile data points achieved via a coordinate measuring machine (CMM). The results have shown that the proposed procedures along with their algorithms are quite successful, practical, and powerful for the blade profile reconstruction and characterization. They have great potential as useful tools for the design, analysis, optimization, inspection, and manufacturing of the blades.
期刊介绍:
Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses.
Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering.
The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.