变系数Gardner方程的一般传播晶格玻尔兹曼模型

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Xue-Hui Zhao , Wen-Qiang Hu , Guo-Hong Yang , Xia Yang
{"title":"变系数Gardner方程的一般传播晶格玻尔兹曼模型","authors":"Xue-Hui Zhao ,&nbsp;Wen-Qiang Hu ,&nbsp;Guo-Hong Yang ,&nbsp;Xia Yang","doi":"10.1016/j.aml.2025.109728","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a general propagation lattice Boltzmann model for solving the variable-coefficient Gardner equation, a nonlinear evolution equation describing weakly nonlinear long-wave propagation in KdV-type media. The proposed model integrates the Lax–Wendroff technique and fractional propagation methodology within a time-splitting framework, enhancing computational stability through adjustable parameters. By systematically deriving the equilibrium distribution function, compensation terms, and source components, the model accurately recovers the macroscopic equation via the Chapman-Enskog analysis. Numerical simulations validate the model’s accuracy and stability, with optimization methods (the Nelder–Mead algorithm and the Broyden–Fletcher–Goldfarb–Shanno method) employed to determine optimal free parameters. The results demonstrate excellent agreement with analytical solutions, highlighting the model’s potential for handling complex nonlinear systems with variable coefficients.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"173 ","pages":"Article 109728"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"General propagation lattice Boltzmann model for the variable-coefficient Gardner equation\",\"authors\":\"Xue-Hui Zhao ,&nbsp;Wen-Qiang Hu ,&nbsp;Guo-Hong Yang ,&nbsp;Xia Yang\",\"doi\":\"10.1016/j.aml.2025.109728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents a general propagation lattice Boltzmann model for solving the variable-coefficient Gardner equation, a nonlinear evolution equation describing weakly nonlinear long-wave propagation in KdV-type media. The proposed model integrates the Lax–Wendroff technique and fractional propagation methodology within a time-splitting framework, enhancing computational stability through adjustable parameters. By systematically deriving the equilibrium distribution function, compensation terms, and source components, the model accurately recovers the macroscopic equation via the Chapman-Enskog analysis. Numerical simulations validate the model’s accuracy and stability, with optimization methods (the Nelder–Mead algorithm and the Broyden–Fletcher–Goldfarb–Shanno method) employed to determine optimal free parameters. The results demonstrate excellent agreement with analytical solutions, highlighting the model’s potential for handling complex nonlinear systems with variable coefficients.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"173 \",\"pages\":\"Article 109728\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965925002782\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925002782","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种求解变系数Gardner方程的广义传播晶格玻尔兹曼模型,该方程是描述kdv型介质中弱非线性长波传播的非线性演化方程。该模型在时间分裂框架内集成了Lax-Wendroff技术和分数传播方法,通过可调参数提高了计算稳定性。该模型通过系统地推导出均衡分布函数、补偿项和源分量,通过Chapman-Enskog分析准确地恢复宏观方程。数值模拟验证了模型的准确性和稳定性,并采用优化方法(Nelder-Mead算法和Broyden-Fletcher-Goldfarb-Shanno方法)确定了最优自由参数。结果表明与解析解非常吻合,突出了该模型处理复杂非线性变系数系统的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
General propagation lattice Boltzmann model for the variable-coefficient Gardner equation
This study presents a general propagation lattice Boltzmann model for solving the variable-coefficient Gardner equation, a nonlinear evolution equation describing weakly nonlinear long-wave propagation in KdV-type media. The proposed model integrates the Lax–Wendroff technique and fractional propagation methodology within a time-splitting framework, enhancing computational stability through adjustable parameters. By systematically deriving the equilibrium distribution function, compensation terms, and source components, the model accurately recovers the macroscopic equation via the Chapman-Enskog analysis. Numerical simulations validate the model’s accuracy and stability, with optimization methods (the Nelder–Mead algorithm and the Broyden–Fletcher–Goldfarb–Shanno method) employed to determine optimal free parameters. The results demonstrate excellent agreement with analytical solutions, highlighting the model’s potential for handling complex nonlinear systems with variable coefficients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信