碱性玄武岩的天然碳酸化作用:斯瓦尔巴群岛Sverrefjellet地区Ca-Mg-Fe碳酸盐岩的地球化学演化

Andrea Pierozzi , Niamh Faulkner , Adrienn Maria Szucs , Luca Terribili , Melanie Maddin , Federica Meloni , Kavya Devkota , Kristina Petra Zubovic , Paul C. Guyett , Juan Diego Rodriguez-Blanco
{"title":"碱性玄武岩的天然碳酸化作用:斯瓦尔巴群岛Sverrefjellet地区Ca-Mg-Fe碳酸盐岩的地球化学演化","authors":"Andrea Pierozzi ,&nbsp;Niamh Faulkner ,&nbsp;Adrienn Maria Szucs ,&nbsp;Luca Terribili ,&nbsp;Melanie Maddin ,&nbsp;Federica Meloni ,&nbsp;Kavya Devkota ,&nbsp;Kristina Petra Zubovic ,&nbsp;Paul C. Guyett ,&nbsp;Juan Diego Rodriguez-Blanco","doi":"10.1016/j.ccst.2025.100510","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates hydrothermal carbonate cements in Quaternary alkali basalts from the Sverrefjellet volcano (Svalbard), offering insights into in-situ natural mineral carbonation. XRD and SEM-BSE-EDS analyses identify two main morphologies, nodular and banded, composed of solid-solution series between magnesite, calcite, and siderite, with distinct compositional zonation. Nodular cements usually show concentric zoning from Mg-rich cores (Ca<sub>0.05</sub>Mg<sub>0.95</sub>CO<sub>3</sub>) to Ca-enriched rims (Ca<sub>0.40</sub>Mg<sub>0.60</sub>CO<sub>3</sub>), reflecting evolving fluid chemistry. Fe-rich nodules (Ca<sub>0.10</sub>Mg<sub>0.50</sub>Fe<sub>0.40</sub>CO<sub>3</sub>) are found near pyrite and display dissolution textures linked to localized redox reactions. Banded cements initiate at the basalt interface as Ca-rich proto-dolomite (Ca<sub>0.65–0.58</sub>Mg<sub>0.35–0.42</sub>CO<sub>3</sub>), transitioning outward to magnesite (Ca<sub>0.10</sub>Mg<sub>0.90</sub>CO<sub>3</sub>) and ferroan magnesite (Ca<sub>0.10</sub>Mg<sub>0.50</sub>Fe<sub>0.40</sub>CO<sub>3</sub>). Ca/Mg ratios decrease with distance from the interface (1.81 to 0.13), while Fe/Mg exceeds 13.5 locally due to Fe-rich coatings and inclusions. Four sequential crystallization stages were identified: (1) irregularly laminated Ca-Mg carbonates, (2) oscillatory-zoned dolomite-magnesite, (3) radiaxial-fibrous Ca-bearing magnesite, and (4) Fe-oxide-rich nanocrystalline rinds. Basaltic silicate and glass dissolution (forsterite, enstatite, anorthite) supplied divalent cations. Redox shifts promoted Fe incorporation. Early Ca<sup>2+</sup> depletion altered fluid chemistry toward Mg<sup>2+</sup> and Fe<sup>2+</sup>, while oscillatory zoning reflects episodic fluid compositional variations. Pyrite and siderite dissolution imply late-stage oxidation and secondary porosity development. These carbonates are hydrothermal in origin, supported by high-temperature phases, fan-like growth textures, and Ca-to-Mg/Fe transitions, consistent with fluid-rock interaction at 60–220 °C and pH 5.2–6.5. The absence of hydrated carbonates and presence of alteration phases also supports hydrothermal precipitation. Comparisons with engineered systems (e.g., CarbFix) underscore the role of temperature in overcoming kinetic barriers to magnesite formation, though metastable proto-dolomite and Mg sequestration in clays reveal limits to carbonation efficiency. These findings constrain predictive models for CO<sub>2</sub> mineralization in basaltic reservoirs, highlighting the interplay of hydrothermal conditions, fluid evolution, and reaction kinetics.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"17 ","pages":"Article 100510"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Natural carbonation in alkali basalts: Geochemical evolution of Ca–Mg–Fe carbonates at Sverrefjellet, Svalbard\",\"authors\":\"Andrea Pierozzi ,&nbsp;Niamh Faulkner ,&nbsp;Adrienn Maria Szucs ,&nbsp;Luca Terribili ,&nbsp;Melanie Maddin ,&nbsp;Federica Meloni ,&nbsp;Kavya Devkota ,&nbsp;Kristina Petra Zubovic ,&nbsp;Paul C. Guyett ,&nbsp;Juan Diego Rodriguez-Blanco\",\"doi\":\"10.1016/j.ccst.2025.100510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates hydrothermal carbonate cements in Quaternary alkali basalts from the Sverrefjellet volcano (Svalbard), offering insights into in-situ natural mineral carbonation. XRD and SEM-BSE-EDS analyses identify two main morphologies, nodular and banded, composed of solid-solution series between magnesite, calcite, and siderite, with distinct compositional zonation. Nodular cements usually show concentric zoning from Mg-rich cores (Ca<sub>0.05</sub>Mg<sub>0.95</sub>CO<sub>3</sub>) to Ca-enriched rims (Ca<sub>0.40</sub>Mg<sub>0.60</sub>CO<sub>3</sub>), reflecting evolving fluid chemistry. Fe-rich nodules (Ca<sub>0.10</sub>Mg<sub>0.50</sub>Fe<sub>0.40</sub>CO<sub>3</sub>) are found near pyrite and display dissolution textures linked to localized redox reactions. Banded cements initiate at the basalt interface as Ca-rich proto-dolomite (Ca<sub>0.65–0.58</sub>Mg<sub>0.35–0.42</sub>CO<sub>3</sub>), transitioning outward to magnesite (Ca<sub>0.10</sub>Mg<sub>0.90</sub>CO<sub>3</sub>) and ferroan magnesite (Ca<sub>0.10</sub>Mg<sub>0.50</sub>Fe<sub>0.40</sub>CO<sub>3</sub>). Ca/Mg ratios decrease with distance from the interface (1.81 to 0.13), while Fe/Mg exceeds 13.5 locally due to Fe-rich coatings and inclusions. Four sequential crystallization stages were identified: (1) irregularly laminated Ca-Mg carbonates, (2) oscillatory-zoned dolomite-magnesite, (3) radiaxial-fibrous Ca-bearing magnesite, and (4) Fe-oxide-rich nanocrystalline rinds. Basaltic silicate and glass dissolution (forsterite, enstatite, anorthite) supplied divalent cations. Redox shifts promoted Fe incorporation. Early Ca<sup>2+</sup> depletion altered fluid chemistry toward Mg<sup>2+</sup> and Fe<sup>2+</sup>, while oscillatory zoning reflects episodic fluid compositional variations. Pyrite and siderite dissolution imply late-stage oxidation and secondary porosity development. These carbonates are hydrothermal in origin, supported by high-temperature phases, fan-like growth textures, and Ca-to-Mg/Fe transitions, consistent with fluid-rock interaction at 60–220 °C and pH 5.2–6.5. The absence of hydrated carbonates and presence of alteration phases also supports hydrothermal precipitation. Comparisons with engineered systems (e.g., CarbFix) underscore the role of temperature in overcoming kinetic barriers to magnesite formation, though metastable proto-dolomite and Mg sequestration in clays reveal limits to carbonation efficiency. These findings constrain predictive models for CO<sub>2</sub> mineralization in basaltic reservoirs, highlighting the interplay of hydrothermal conditions, fluid evolution, and reaction kinetics.</div></div>\",\"PeriodicalId\":9387,\"journal\":{\"name\":\"Carbon Capture Science & Technology\",\"volume\":\"17 \",\"pages\":\"Article 100510\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Capture Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772656825001472\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656825001472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究对Sverrefjellet火山(Svalbard)第四纪碱性玄武岩中的热液碳酸盐胶结物进行了研究,为原位天然矿物碳酸化提供了新的见解。XRD和SEM-BSE-EDS分析表明,该矿石主要由菱镁矿、方解石和菱铁矿之间的固溶体系列组成,主要形态为结核状和带状,具有明显的成分分带性。结核型胶结物通常呈现富镁岩心(Ca0.05Mg0.95CO3)至富钙岩心(Ca0.40Mg0.60CO3)的同心分带,反映了流体化学的演化。富铁结核(Ca0.10Mg0.50Fe0.40CO3)在黄铁矿附近发现,并显示出与局部氧化还原反应有关的溶解结构。在玄武岩界面处,带状胶结物以富钙原白云岩(ca0.65 ~ 0.58 mg0.35 ~ 0.42 co3)的形式初始化,向外过渡为菱镁矿(Ca0.10Mg0.90CO3)和铁菱镁矿(Ca0.10Mg0.50Fe0.40CO3)。Ca/Mg比值随着与界面距离的增加而减小(1.81 ~ 0.13),Fe/Mg局部大于13.5。确定了四个顺序结晶阶段:(1)不规则层状钙镁碳酸盐,(2)振荡带状白云石-菱镁矿,(3)径向纤维状含钙菱镁矿,(4)富氧化铁纳米晶壳。玄武岩硅酸盐和玻璃溶出物(长辉石、顽辉石、钙长石)提供二价阳离子。氧化还原位移促进了铁的结合。早期Ca2+耗竭改变了流体化学向Mg2+和Fe2+的转变,而振荡带反映了流体成分的幕式变化。黄铁矿和菱铁矿的溶蚀意味着晚期氧化和次生孔隙发育。这些碳酸盐岩为热液成因,受高温相、扇形生长结构和ca - mg /Fe转变的支持,与60 ~ 220℃、pH 5.2 ~ 6.5的流体-岩石相互作用一致。水合碳酸盐的缺乏和蚀变相的存在也支持热液沉淀。与工程系统(如CarbFix)的比较强调了温度在克服菱镁矿形成的动力学障碍中的作用,尽管亚稳原白云岩和粘土中的镁固储显示了碳化效率的局限性。这些发现限制了玄武岩储层中CO2矿化的预测模型,突出了热液条件、流体演化和反应动力学的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Natural carbonation in alkali basalts: Geochemical evolution of Ca–Mg–Fe carbonates at Sverrefjellet, Svalbard

Natural carbonation in alkali basalts: Geochemical evolution of Ca–Mg–Fe carbonates at Sverrefjellet, Svalbard
This study investigates hydrothermal carbonate cements in Quaternary alkali basalts from the Sverrefjellet volcano (Svalbard), offering insights into in-situ natural mineral carbonation. XRD and SEM-BSE-EDS analyses identify two main morphologies, nodular and banded, composed of solid-solution series between magnesite, calcite, and siderite, with distinct compositional zonation. Nodular cements usually show concentric zoning from Mg-rich cores (Ca0.05Mg0.95CO3) to Ca-enriched rims (Ca0.40Mg0.60CO3), reflecting evolving fluid chemistry. Fe-rich nodules (Ca0.10Mg0.50Fe0.40CO3) are found near pyrite and display dissolution textures linked to localized redox reactions. Banded cements initiate at the basalt interface as Ca-rich proto-dolomite (Ca0.65–0.58Mg0.35–0.42CO3), transitioning outward to magnesite (Ca0.10Mg0.90CO3) and ferroan magnesite (Ca0.10Mg0.50Fe0.40CO3). Ca/Mg ratios decrease with distance from the interface (1.81 to 0.13), while Fe/Mg exceeds 13.5 locally due to Fe-rich coatings and inclusions. Four sequential crystallization stages were identified: (1) irregularly laminated Ca-Mg carbonates, (2) oscillatory-zoned dolomite-magnesite, (3) radiaxial-fibrous Ca-bearing magnesite, and (4) Fe-oxide-rich nanocrystalline rinds. Basaltic silicate and glass dissolution (forsterite, enstatite, anorthite) supplied divalent cations. Redox shifts promoted Fe incorporation. Early Ca2+ depletion altered fluid chemistry toward Mg2+ and Fe2+, while oscillatory zoning reflects episodic fluid compositional variations. Pyrite and siderite dissolution imply late-stage oxidation and secondary porosity development. These carbonates are hydrothermal in origin, supported by high-temperature phases, fan-like growth textures, and Ca-to-Mg/Fe transitions, consistent with fluid-rock interaction at 60–220 °C and pH 5.2–6.5. The absence of hydrated carbonates and presence of alteration phases also supports hydrothermal precipitation. Comparisons with engineered systems (e.g., CarbFix) underscore the role of temperature in overcoming kinetic barriers to magnesite formation, though metastable proto-dolomite and Mg sequestration in clays reveal limits to carbonation efficiency. These findings constrain predictive models for CO2 mineralization in basaltic reservoirs, highlighting the interplay of hydrothermal conditions, fluid evolution, and reaction kinetics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信