正交模与brick-Brauer-Thrall猜想

IF 0.8 2区 数学 Q2 MATHEMATICS
Kaveh Mousavand , Charles Paquette
{"title":"正交模与brick-Brauer-Thrall猜想","authors":"Kaveh Mousavand ,&nbsp;Charles Paquette","doi":"10.1016/j.jalgebra.2025.08.027","DOIUrl":null,"url":null,"abstract":"<div><div>For finite dimensional algebras over algebraically closed fields, we study the sets of pairwise Hom-orthogonal modules and obtain new results on some open conjectures on the behaviour of bricks and several related problems, which we generally refer to as brick-Brauer-Thrall (bBT) conjectures. Using some algebraic and geometric tools, and in terms of the notion of Hom-orthogonality, we find necessary and sufficient conditions for the existence of infinite families of bricks of the same dimension. This sheds new light on the bBT conjectures and we prove some of them for new families of algebras. Our results imply some interesting algebraic and geometric characterizations of brick-finite algebras as conceptual generalizations of local algebras. We also verify the bBT conjectures for any algebra whose Auslander-Reiten quiver has a generalized standard component, which particularly extends some results of Chindris-Kinser-Weyman on the algebras with preprojective components.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"686 ","pages":"Pages 650-676"},"PeriodicalIF":0.8000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hom-orthogonal modules and brick-Brauer-Thrall conjectures\",\"authors\":\"Kaveh Mousavand ,&nbsp;Charles Paquette\",\"doi\":\"10.1016/j.jalgebra.2025.08.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For finite dimensional algebras over algebraically closed fields, we study the sets of pairwise Hom-orthogonal modules and obtain new results on some open conjectures on the behaviour of bricks and several related problems, which we generally refer to as brick-Brauer-Thrall (bBT) conjectures. Using some algebraic and geometric tools, and in terms of the notion of Hom-orthogonality, we find necessary and sufficient conditions for the existence of infinite families of bricks of the same dimension. This sheds new light on the bBT conjectures and we prove some of them for new families of algebras. Our results imply some interesting algebraic and geometric characterizations of brick-finite algebras as conceptual generalizations of local algebras. We also verify the bBT conjectures for any algebra whose Auslander-Reiten quiver has a generalized standard component, which particularly extends some results of Chindris-Kinser-Weyman on the algebras with preprojective components.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"686 \",\"pages\":\"Pages 650-676\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325004995\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325004995","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于代数闭域上的有限维代数,研究了对偶homo正交模集,得到了一些关于砖的性质的开放猜想和相关问题的新结果,这些猜想通常被称为brick-Brauer-Thrall猜想。利用一些代数和几何工具,根据同正交的概念,给出了无限同维砖族存在的充分必要条件。这为bBT猜想提供了新的线索,我们为新的代数家族证明了其中的一些。我们的结果暗示了砖有限代数作为局部代数的概念推广的一些有趣的代数和几何特征。我们还验证了Auslander-Reiten颤振具有广义标准分量的代数的bBT猜想,特别推广了Chindris-Kinser-Weyman关于预投影分量代数的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hom-orthogonal modules and brick-Brauer-Thrall conjectures
For finite dimensional algebras over algebraically closed fields, we study the sets of pairwise Hom-orthogonal modules and obtain new results on some open conjectures on the behaviour of bricks and several related problems, which we generally refer to as brick-Brauer-Thrall (bBT) conjectures. Using some algebraic and geometric tools, and in terms of the notion of Hom-orthogonality, we find necessary and sufficient conditions for the existence of infinite families of bricks of the same dimension. This sheds new light on the bBT conjectures and we prove some of them for new families of algebras. Our results imply some interesting algebraic and geometric characterizations of brick-finite algebras as conceptual generalizations of local algebras. We also verify the bBT conjectures for any algebra whose Auslander-Reiten quiver has a generalized standard component, which particularly extends some results of Chindris-Kinser-Weyman on the algebras with preprojective components.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信