{"title":"对称理想和不变希尔伯特格式","authors":"Sebastian Debus , Andreas Kretschmer","doi":"10.1016/j.jalgebra.2025.08.023","DOIUrl":null,"url":null,"abstract":"<div><div>A symmetric ideal is an ideal in a polynomial ring which is stable under all permutations of the variables. In this paper we initiate a global study of zero-dimensional symmetric ideals. By this we mean a geometric study of the invariant Hilbert schemes <span><math><msubsup><mrow><mi>Hilb</mi></mrow><mrow><mi>ρ</mi></mrow><mrow><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></msubsup><mo>(</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> parametrizing symmetric subschemes of <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> whose coordinate rings, as <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>-modules, are isomorphic to a given representation <em>ρ</em>. In the case that <span><math><mi>ρ</mi><mo>=</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>λ</mi></mrow></msup></math></span> is a permutation module corresponding to certain special types of partitions <em>λ</em> of <em>n</em>, we prove that <span><math><msubsup><mrow><mi>Hilb</mi></mrow><mrow><mi>ρ</mi></mrow><mrow><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></msubsup><mo>(</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> is irreducible or even smooth. We also prove irreducibility whenever <span><math><mi>dim</mi><mo></mo><mi>ρ</mi><mo>≤</mo><mn>2</mn><mi>n</mi></math></span> and the invariant Hilbert scheme is non-empty. In this same range, we classify all homogeneous symmetric ideals and decide which of these define singular points of <span><math><msubsup><mrow><mi>Hilb</mi></mrow><mrow><mi>ρ</mi></mrow><mrow><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></msubsup><mo>(</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>. A central tool is the combinatorial theory of higher Specht polynomials.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"686 ","pages":"Pages 595-634"},"PeriodicalIF":0.8000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetric ideals and invariant Hilbert schemes\",\"authors\":\"Sebastian Debus , Andreas Kretschmer\",\"doi\":\"10.1016/j.jalgebra.2025.08.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A symmetric ideal is an ideal in a polynomial ring which is stable under all permutations of the variables. In this paper we initiate a global study of zero-dimensional symmetric ideals. By this we mean a geometric study of the invariant Hilbert schemes <span><math><msubsup><mrow><mi>Hilb</mi></mrow><mrow><mi>ρ</mi></mrow><mrow><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></msubsup><mo>(</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> parametrizing symmetric subschemes of <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> whose coordinate rings, as <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>-modules, are isomorphic to a given representation <em>ρ</em>. In the case that <span><math><mi>ρ</mi><mo>=</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>λ</mi></mrow></msup></math></span> is a permutation module corresponding to certain special types of partitions <em>λ</em> of <em>n</em>, we prove that <span><math><msubsup><mrow><mi>Hilb</mi></mrow><mrow><mi>ρ</mi></mrow><mrow><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></msubsup><mo>(</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> is irreducible or even smooth. We also prove irreducibility whenever <span><math><mi>dim</mi><mo></mo><mi>ρ</mi><mo>≤</mo><mn>2</mn><mi>n</mi></math></span> and the invariant Hilbert scheme is non-empty. In this same range, we classify all homogeneous symmetric ideals and decide which of these define singular points of <span><math><msubsup><mrow><mi>Hilb</mi></mrow><mrow><mi>ρ</mi></mrow><mrow><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></msubsup><mo>(</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>. A central tool is the combinatorial theory of higher Specht polynomials.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"686 \",\"pages\":\"Pages 595-634\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325005046\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325005046","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
A symmetric ideal is an ideal in a polynomial ring which is stable under all permutations of the variables. In this paper we initiate a global study of zero-dimensional symmetric ideals. By this we mean a geometric study of the invariant Hilbert schemes parametrizing symmetric subschemes of whose coordinate rings, as -modules, are isomorphic to a given representation ρ. In the case that is a permutation module corresponding to certain special types of partitions λ of n, we prove that is irreducible or even smooth. We also prove irreducibility whenever and the invariant Hilbert scheme is non-empty. In this same range, we classify all homogeneous symmetric ideals and decide which of these define singular points of . A central tool is the combinatorial theory of higher Specht polynomials.
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.