{"title":"临界和次临界情况下自相似高斯过程的泛函极限定理","authors":"Heguang Liu","doi":"10.1016/j.spl.2025.110547","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, under certain conditions, we investigate the asymptotic behavior of <span><math><mrow><mo>{</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mi>t</mi></mrow></msubsup><msub><mrow><mi>f</mi></mrow><mrow><mi>α</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>H</mi></mrow></msup><mrow><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>−</mo><mi>λ</mi><mo>)</mo></mrow><mo>)</mo></mrow><mspace></mspace><mi>d</mi><mi>s</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>≥</mo><mn>0</mn><mo>}</mo></mrow></math></span>, where <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span> is the density of symmetric <span><math><mi>α</mi></math></span>-stable random variables with <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>X</mi><mo>=</mo><mrow><mo>{</mo><mrow><msub><mrow><mi>X</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>,</mo><mspace></mspace><mi>t</mi><mo>≥</mo><mn>0</mn></mrow><mo>}</mo></mrow></mrow></math></span> is some self-similar Gaussian process with index <span><math><mrow><mi>H</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>. We mainly focus on the critical case <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mn>2</mn><mi>α</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span> and the subcritical case <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mn>2</mn><mi>α</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo><</mo><mn>1</mn></mrow></math></span>. This work will extend the corresponding results in Hong et al. (2024) and may give another definition for the fractional derivative of local times of the Gaussian process <span><math><mi>X</mi></math></span>.</div></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"227 ","pages":"Article 110547"},"PeriodicalIF":0.7000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional limit theorems for some self-similar Gaussian processes in critical and subcritical cases\",\"authors\":\"Heguang Liu\",\"doi\":\"10.1016/j.spl.2025.110547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, under certain conditions, we investigate the asymptotic behavior of <span><math><mrow><mo>{</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mi>t</mi></mrow></msubsup><msub><mrow><mi>f</mi></mrow><mrow><mi>α</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>H</mi></mrow></msup><mrow><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>−</mo><mi>λ</mi><mo>)</mo></mrow><mo>)</mo></mrow><mspace></mspace><mi>d</mi><mi>s</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>≥</mo><mn>0</mn><mo>}</mo></mrow></math></span>, where <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span> is the density of symmetric <span><math><mi>α</mi></math></span>-stable random variables with <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>X</mi><mo>=</mo><mrow><mo>{</mo><mrow><msub><mrow><mi>X</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>,</mo><mspace></mspace><mi>t</mi><mo>≥</mo><mn>0</mn></mrow><mo>}</mo></mrow></mrow></math></span> is some self-similar Gaussian process with index <span><math><mrow><mi>H</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>. We mainly focus on the critical case <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mn>2</mn><mi>α</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span> and the subcritical case <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mn>2</mn><mi>α</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo><</mo><mn>1</mn></mrow></math></span>. This work will extend the corresponding results in Hong et al. (2024) and may give another definition for the fractional derivative of local times of the Gaussian process <span><math><mi>X</mi></math></span>.</div></div>\",\"PeriodicalId\":49475,\"journal\":{\"name\":\"Statistics & Probability Letters\",\"volume\":\"227 \",\"pages\":\"Article 110547\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics & Probability Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167715225001920\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics & Probability Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715225001920","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
摘要
在一定条件下,研究了{∫0tfα(nH(Xs−λ))ds,t≥0}的渐近性,其中,fα是α∈(0,2)且X={Xt,t≥0}的对称α-稳定随机变量的密度,是索引H∈(0,1)的自相似高斯过程。我们主要关注临界情况H(2α+1)=1和亚临界情况H(2α+1)<1。这项工作将扩展Hong et al.(2024)的相应结果,并可能给出高斯过程X局部时间的分数阶导数的另一种定义。
Functional limit theorems for some self-similar Gaussian processes in critical and subcritical cases
In this paper, under certain conditions, we investigate the asymptotic behavior of , where is the density of symmetric -stable random variables with and is some self-similar Gaussian process with index . We mainly focus on the critical case and the subcritical case . This work will extend the corresponding results in Hong et al. (2024) and may give another definition for the fractional derivative of local times of the Gaussian process .
期刊介绍:
Statistics & Probability Letters adopts a novel and highly innovative approach to the publication of research findings in statistics and probability. It features concise articles, rapid publication and broad coverage of the statistics and probability literature.
Statistics & Probability Letters is a refereed journal. Articles will be limited to six journal pages (13 double-space typed pages) including references and figures. Apart from the six-page limitation, originality, quality and clarity will be the criteria for choosing the material to be published in Statistics & Probability Letters. Every attempt will be made to provide the first review of a submitted manuscript within three months of submission.
The proliferation of literature and long publication delays have made it difficult for researchers and practitioners to keep up with new developments outside of, or even within, their specialization. The aim of Statistics & Probability Letters is to help to alleviate this problem. Concise communications (letters) allow readers to quickly and easily digest large amounts of material and to stay up-to-date with developments in all areas of statistics and probability.
The mainstream of Letters will focus on new statistical methods, theoretical results, and innovative applications of statistics and probability to other scientific disciplines. Key results and central ideas must be presented in a clear and concise manner. These results may be part of a larger study that the author will submit at a later time as a full length paper to SPL or to another journal. Theory and methodology may be published with proofs omitted, or only sketched, but only if sufficient support material is provided so that the findings can be verified. Empirical and computational results that are of significant value will be published.