先进的Cu0.5-xZnxMg0.5Fe₂O₄/ ceo2 /ZnFe₂O₄纳米复合材料:从结构完整性到能源和生物医学功能

IF 5.5 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Ala Manohar , Thirukachhi Suvarna , S.V. Prabhakar Vattikuti , Panchanathan Manivasagan , Eue-Soon Jang , Amjad A. Almunyif , Ki Hyeon Kim
{"title":"先进的Cu0.5-xZnxMg0.5Fe₂O₄/ ceo2 /ZnFe₂O₄纳米复合材料:从结构完整性到能源和生物医学功能","authors":"Ala Manohar ,&nbsp;Thirukachhi Suvarna ,&nbsp;S.V. Prabhakar Vattikuti ,&nbsp;Panchanathan Manivasagan ,&nbsp;Eue-Soon Jang ,&nbsp;Amjad A. Almunyif ,&nbsp;Ki Hyeon Kim","doi":"10.1016/j.matchar.2025.115547","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents the synthesis and thorough characterization of a series of novel nanocomposites, Cu<sub>0.5-x</sub>Zn<sub>x</sub>Mg<sub>0.5</sub>Fe₂O₄ (x = 0.1–0.3)/CeO₂/ZnFe₂O₄, designated as ZCMF@ZC1, ZCMF@ZC2, and ZCMF@ZC3. X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM) analyses confirmed the crystalline structures and the successful incorporation of the different phases. Morphological studies using field emission scanning electron microscopy (FESEM) and TEM revealed uniformly distributed nanoparticles with sizes in the range of 11–15 nm. Elemental analysis through energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) verified the composition and indicated the presence of mixed oxidation states among the constituent elements. Fourier transform infrared (FTIR) spectroscopy identified characteristic metal–oxide bonds. Brunauer–Emmett–Teller (BET) measurements showed mesoporous features, with specific surface areas between 8.7 and 11 m<sup>2</sup>/g. Magnetic measurements demonstrated superparamagnetic behavior across all samples, with ZCMF@ZC2 exhibiting the highest saturation magnetization (Ms) of 25.91 emu/g. Electrochemical testing, including cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD), revealed prominent pseudocapacitive behavior, with ZCMF@ZC2 achieving a maximum specific capacitance (Cs) of 340 F/g at 1 A/g and excellent rate capability. Biocompatibility assessments, performed using MTT and live/dead cell assays, confirmed that all composites maintained cell viability above 80 %. These findings highlight the promising potential of synthesized nanocomposites for applications in both energy storage devices and biomedical fields.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"229 ","pages":"Article 115547"},"PeriodicalIF":5.5000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced Cu0.5-xZnxMg0.5Fe₂O₄/CeO₂/ZnFe₂O₄ nanocomposites: From structural integrity to energy and biomedical functionality\",\"authors\":\"Ala Manohar ,&nbsp;Thirukachhi Suvarna ,&nbsp;S.V. Prabhakar Vattikuti ,&nbsp;Panchanathan Manivasagan ,&nbsp;Eue-Soon Jang ,&nbsp;Amjad A. Almunyif ,&nbsp;Ki Hyeon Kim\",\"doi\":\"10.1016/j.matchar.2025.115547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents the synthesis and thorough characterization of a series of novel nanocomposites, Cu<sub>0.5-x</sub>Zn<sub>x</sub>Mg<sub>0.5</sub>Fe₂O₄ (x = 0.1–0.3)/CeO₂/ZnFe₂O₄, designated as ZCMF@ZC1, ZCMF@ZC2, and ZCMF@ZC3. X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM) analyses confirmed the crystalline structures and the successful incorporation of the different phases. Morphological studies using field emission scanning electron microscopy (FESEM) and TEM revealed uniformly distributed nanoparticles with sizes in the range of 11–15 nm. Elemental analysis through energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) verified the composition and indicated the presence of mixed oxidation states among the constituent elements. Fourier transform infrared (FTIR) spectroscopy identified characteristic metal–oxide bonds. Brunauer–Emmett–Teller (BET) measurements showed mesoporous features, with specific surface areas between 8.7 and 11 m<sup>2</sup>/g. Magnetic measurements demonstrated superparamagnetic behavior across all samples, with ZCMF@ZC2 exhibiting the highest saturation magnetization (Ms) of 25.91 emu/g. Electrochemical testing, including cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD), revealed prominent pseudocapacitive behavior, with ZCMF@ZC2 achieving a maximum specific capacitance (Cs) of 340 F/g at 1 A/g and excellent rate capability. Biocompatibility assessments, performed using MTT and live/dead cell assays, confirmed that all composites maintained cell viability above 80 %. These findings highlight the promising potential of synthesized nanocomposites for applications in both energy storage devices and biomedical fields.</div></div>\",\"PeriodicalId\":18727,\"journal\":{\"name\":\"Materials Characterization\",\"volume\":\"229 \",\"pages\":\"Article 115547\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Characterization\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1044580325008368\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044580325008368","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了一系列新型纳米复合材料Cu0.5-xZnxMg0.5Fe₂O₄(x = 0.1-0.3)/CeO₂/ZnFe₂O₄的合成和全面表征,编号为ZCMF@ZC1, ZCMF@ZC2和ZCMF@ZC3。x射线衍射(XRD)和高分辨率透射电镜(HR-TEM)分析证实了晶体结构和不同相的成功结合。利用场发射扫描电镜(FESEM)和透射电镜(TEM)进行形态学研究,发现纳米颗粒均匀分布,尺寸在11-15 nm之间。通过能量色散x射线能谱(EDS)和x射线光电子能谱(XPS)进行元素分析,证实了其组成,并表明组成元素之间存在混合氧化态。傅里叶变换红外光谱(FTIR)鉴定了特征金属氧化物键。brunauer - emmet - teller (BET)测量显示介孔特征,比表面积在8.7 ~ 11m2 /g之间。磁性测量表明,所有样品都具有超顺磁性,ZCMF@ZC2的饱和磁化强度(Ms)最高,为25.91 emu/g。包括循环伏安法(CV)和恒流充放电(GCD)在内的电化学测试显示,ZCMF@ZC2在1 a /g下的最大比电容(Cs)达到340 F/g,具有优异的倍率能力。使用MTT和活/死细胞试验进行的生物相容性评估证实,所有复合材料的细胞存活率均保持在80%以上。这些发现突出了合成纳米复合材料在储能装置和生物医学领域的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advanced Cu0.5-xZnxMg0.5Fe₂O₄/CeO₂/ZnFe₂O₄ nanocomposites: From structural integrity to energy and biomedical functionality
This study presents the synthesis and thorough characterization of a series of novel nanocomposites, Cu0.5-xZnxMg0.5Fe₂O₄ (x = 0.1–0.3)/CeO₂/ZnFe₂O₄, designated as ZCMF@ZC1, ZCMF@ZC2, and ZCMF@ZC3. X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM) analyses confirmed the crystalline structures and the successful incorporation of the different phases. Morphological studies using field emission scanning electron microscopy (FESEM) and TEM revealed uniformly distributed nanoparticles with sizes in the range of 11–15 nm. Elemental analysis through energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) verified the composition and indicated the presence of mixed oxidation states among the constituent elements. Fourier transform infrared (FTIR) spectroscopy identified characteristic metal–oxide bonds. Brunauer–Emmett–Teller (BET) measurements showed mesoporous features, with specific surface areas between 8.7 and 11 m2/g. Magnetic measurements demonstrated superparamagnetic behavior across all samples, with ZCMF@ZC2 exhibiting the highest saturation magnetization (Ms) of 25.91 emu/g. Electrochemical testing, including cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD), revealed prominent pseudocapacitive behavior, with ZCMF@ZC2 achieving a maximum specific capacitance (Cs) of 340 F/g at 1 A/g and excellent rate capability. Biocompatibility assessments, performed using MTT and live/dead cell assays, confirmed that all composites maintained cell viability above 80 %. These findings highlight the promising potential of synthesized nanocomposites for applications in both energy storage devices and biomedical fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Characterization
Materials Characterization 工程技术-材料科学:表征与测试
CiteScore
7.60
自引率
8.50%
发文量
746
审稿时长
36 days
期刊介绍: Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials. The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal. The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include: Metals & Alloys Ceramics Nanomaterials Biomedical materials Optical materials Composites Natural Materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信