MXene阳极用于柔性双镀Zn-Br2微电池的超高锌利用率

IF 4.6 2区 化学 Q2 CHEMISTRY, PHYSICAL
Bin Wang, Guoliang Ma, Le Yu, Jiangqi Zhao* and Zifeng Lin*, 
{"title":"MXene阳极用于柔性双镀Zn-Br2微电池的超高锌利用率","authors":"Bin Wang,&nbsp;Guoliang Ma,&nbsp;Le Yu,&nbsp;Jiangqi Zhao* and Zifeng Lin*,&nbsp;","doi":"10.1021/acs.jpclett.5c02342","DOIUrl":null,"url":null,"abstract":"<p >Aqueous zinc-ion microbatteries exhibit promising prospects for wearable devices due to their high safety and cost-effectiveness but face challenges such as low energy density and short cycle life. To address these challenges, a dual-plating flexible Zn–Br<sub>2</sub> microbattery was developed using freestanding MXene films as a zinc metal free anode. The MXene anode retains no redundant Zn, as Zn<sup>2+</sup> from the electrolyte undergoes deposition/stripping reactions on its substrate, thereby eliminating the necessity for excess zinc. Compared to Zn anode, it exhibits significantly reduced mass while achieving enhanced depth of discharge and markedly ultrahigh zinc utilization efficiency. The MXene anode can in situ form a ZnF<sub>2</sub>-rich layer and exhibits low solvation energy, excellent hydrophilicity, and mechanical properties. Leveraging these properties, the MXene anode demonstrates low nucleation overpotential (2.8 mV) and remarkable cycling stability (970 h). More importantly, assembled Zn–Br<sub>2</sub> microbatteries show 6000-cycle stability, flexibility, high energy density, and advance wearable energy storage.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"16 37","pages":"9839–9848"},"PeriodicalIF":4.6000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultra-High Zinc Utilization Enabled by MXene Anode for Flexible Dual-Plating Zn–Br2 Microbatteries\",\"authors\":\"Bin Wang,&nbsp;Guoliang Ma,&nbsp;Le Yu,&nbsp;Jiangqi Zhao* and Zifeng Lin*,&nbsp;\",\"doi\":\"10.1021/acs.jpclett.5c02342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Aqueous zinc-ion microbatteries exhibit promising prospects for wearable devices due to their high safety and cost-effectiveness but face challenges such as low energy density and short cycle life. To address these challenges, a dual-plating flexible Zn–Br<sub>2</sub> microbattery was developed using freestanding MXene films as a zinc metal free anode. The MXene anode retains no redundant Zn, as Zn<sup>2+</sup> from the electrolyte undergoes deposition/stripping reactions on its substrate, thereby eliminating the necessity for excess zinc. Compared to Zn anode, it exhibits significantly reduced mass while achieving enhanced depth of discharge and markedly ultrahigh zinc utilization efficiency. The MXene anode can in situ form a ZnF<sub>2</sub>-rich layer and exhibits low solvation energy, excellent hydrophilicity, and mechanical properties. Leveraging these properties, the MXene anode demonstrates low nucleation overpotential (2.8 mV) and remarkable cycling stability (970 h). More importantly, assembled Zn–Br<sub>2</sub> microbatteries show 6000-cycle stability, flexibility, high energy density, and advance wearable energy storage.</p>\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\"16 37\",\"pages\":\"9839–9848\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c02342\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c02342","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

水溶液锌离子微电池具有较高的安全性和成本效益,在可穿戴设备中具有广阔的应用前景,但也面临着能量密度低、循环寿命短等挑战。为了解决这些问题,研究人员使用独立的MXene薄膜作为无锌金属阳极,开发了一种双镀柔性Zn-Br2微电池。MXene阳极不保留多余的Zn,因为来自电解质的Zn2+在其衬底上发生沉积/剥离反应,从而消除了过量锌的必要性。与锌阳极相比,其质量显著降低,放电深度增加,锌利用率显著提高。MXene阳极能原位形成富znf2层,具有低溶剂化能、优异的亲水性和力学性能。利用这些特性,MXene阳极具有低成核过电位(2.8 mV)和显著的循环稳定性(970 h)。更重要的是,组装的Zn-Br2微电池具有6000次循环的稳定性、灵活性、高能量密度和先进的可穿戴储能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ultra-High Zinc Utilization Enabled by MXene Anode for Flexible Dual-Plating Zn–Br2 Microbatteries

Ultra-High Zinc Utilization Enabled by MXene Anode for Flexible Dual-Plating Zn–Br2 Microbatteries

Ultra-High Zinc Utilization Enabled by MXene Anode for Flexible Dual-Plating Zn–Br2 Microbatteries

Aqueous zinc-ion microbatteries exhibit promising prospects for wearable devices due to their high safety and cost-effectiveness but face challenges such as low energy density and short cycle life. To address these challenges, a dual-plating flexible Zn–Br2 microbattery was developed using freestanding MXene films as a zinc metal free anode. The MXene anode retains no redundant Zn, as Zn2+ from the electrolyte undergoes deposition/stripping reactions on its substrate, thereby eliminating the necessity for excess zinc. Compared to Zn anode, it exhibits significantly reduced mass while achieving enhanced depth of discharge and markedly ultrahigh zinc utilization efficiency. The MXene anode can in situ form a ZnF2-rich layer and exhibits low solvation energy, excellent hydrophilicity, and mechanical properties. Leveraging these properties, the MXene anode demonstrates low nucleation overpotential (2.8 mV) and remarkable cycling stability (970 h). More importantly, assembled Zn–Br2 microbatteries show 6000-cycle stability, flexibility, high energy density, and advance wearable energy storage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信