非挥发性固态4-(n-咔唑基)吡啶添加剂用于钙钛矿太阳能电池,具有改善的热稳定性和操作稳定性

IF 60.1 1区 材料科学 Q1 ENERGY & FUELS
Kihoon Kim, Sangjin Yang, Chanhyeok Kim, Jeewon Park, Seokhwan Jeong, Youngmin Kim, Jinsoo Park, Zhe Sun, Minseok Kang, Bong Joo Kang, Juhong Oh, Jae Sung Yun, Seung-Jae Shin, Changduk Yang, Hanul Min
{"title":"非挥发性固态4-(n-咔唑基)吡啶添加剂用于钙钛矿太阳能电池,具有改善的热稳定性和操作稳定性","authors":"Kihoon Kim, Sangjin Yang, Chanhyeok Kim, Jeewon Park, Seokhwan Jeong, Youngmin Kim, Jinsoo Park, Zhe Sun, Minseok Kang, Bong Joo Kang, Juhong Oh, Jae Sung Yun, Seung-Jae Shin, Changduk Yang, Hanul Min","doi":"10.1038/s41560-025-01864-z","DOIUrl":null,"url":null,"abstract":"<p>Liquid-state 4-<i>tert</i>-butylpyridine is essential for achieving high performance in n–i–p perovskite solar cells. 4-<i>tert</i>- Butylpyridine effectively dissolves the lithium bis(trifluoromethanesulfonyl)imide dopant and stabilizes lithium ions. However, its high volatility and corrosive nature can degrade the perovskite layer and promote the formation of byproducts and pinholes in the hole transport layer under thermal stress, ultimately compromising device stability. Here we introduce a non-volatile, solid-state alternative—4-(<i>N</i>-carbazolyl)pyridine (4CP)—which stabilizes lithium ions and facilitates the formation of lithium bis(trifluoromethanesulfonyl)imide complexes. Perovskite solar cells incorporating 4CP achieve a power conversion efficiency of 26.2% (25.8% certified) and maintain 80% of their initial performance for over 3,000 h at maximum power point tracking. The unencapsulated devices retain 90% of their initial efficiency after 200 thermal shock cycles between −80 °C and 80 °C, and under continuous exposure to 65 °C and 85 °C. The adoption of 4CP could help improve the stability of n–i–p perovskite solar cells.</p>","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"35 1","pages":""},"PeriodicalIF":60.1000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-volatile solid-state 4-(N-carbazolyl)pyridine additive for perovskite solar cells with improved thermal and operational stability\",\"authors\":\"Kihoon Kim, Sangjin Yang, Chanhyeok Kim, Jeewon Park, Seokhwan Jeong, Youngmin Kim, Jinsoo Park, Zhe Sun, Minseok Kang, Bong Joo Kang, Juhong Oh, Jae Sung Yun, Seung-Jae Shin, Changduk Yang, Hanul Min\",\"doi\":\"10.1038/s41560-025-01864-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Liquid-state 4-<i>tert</i>-butylpyridine is essential for achieving high performance in n–i–p perovskite solar cells. 4-<i>tert</i>- Butylpyridine effectively dissolves the lithium bis(trifluoromethanesulfonyl)imide dopant and stabilizes lithium ions. However, its high volatility and corrosive nature can degrade the perovskite layer and promote the formation of byproducts and pinholes in the hole transport layer under thermal stress, ultimately compromising device stability. Here we introduce a non-volatile, solid-state alternative—4-(<i>N</i>-carbazolyl)pyridine (4CP)—which stabilizes lithium ions and facilitates the formation of lithium bis(trifluoromethanesulfonyl)imide complexes. Perovskite solar cells incorporating 4CP achieve a power conversion efficiency of 26.2% (25.8% certified) and maintain 80% of their initial performance for over 3,000 h at maximum power point tracking. The unencapsulated devices retain 90% of their initial efficiency after 200 thermal shock cycles between −80 °C and 80 °C, and under continuous exposure to 65 °C and 85 °C. The adoption of 4CP could help improve the stability of n–i–p perovskite solar cells.</p>\",\"PeriodicalId\":19073,\"journal\":{\"name\":\"Nature Energy\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":60.1000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41560-025-01864-z\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41560-025-01864-z","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

液态4-叔丁基吡啶对于实现n-i-p钙钛矿太阳能电池的高性能至关重要。4-叔丁基吡啶有效溶解锂二(三氟甲烷磺酰)亚胺掺杂剂并稳定锂离子。然而,它的高挥发性和腐蚀性会使钙钛矿层降解,并在热应力作用下促进孔传输层的副产物和针孔的形成,最终影响器件的稳定性。在这里,我们介绍了一种非挥发性的固态替代品- 4-(n-咔唑基)吡啶(4CP) -它可以稳定锂离子并促进锂二(三氟甲烷磺酰基)亚胺配合物的形成。含有4CP的钙钛矿太阳能电池实现了26.2%的功率转换效率(25.8%的认证),并在最大功率点跟踪下保持80%的初始性能超过3,000小时。未封装的器件在- 80°C和80°C之间,以及65°C和85°C的连续暴露下,经过200次热冲击循环后,仍能保持90%的初始效率。采用4CP有助于提高n-i-p钙钛矿太阳能电池的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Non-volatile solid-state 4-(N-carbazolyl)pyridine additive for perovskite solar cells with improved thermal and operational stability

Non-volatile solid-state 4-(N-carbazolyl)pyridine additive for perovskite solar cells with improved thermal and operational stability

Liquid-state 4-tert-butylpyridine is essential for achieving high performance in n–i–p perovskite solar cells. 4-tert- Butylpyridine effectively dissolves the lithium bis(trifluoromethanesulfonyl)imide dopant and stabilizes lithium ions. However, its high volatility and corrosive nature can degrade the perovskite layer and promote the formation of byproducts and pinholes in the hole transport layer under thermal stress, ultimately compromising device stability. Here we introduce a non-volatile, solid-state alternative—4-(N-carbazolyl)pyridine (4CP)—which stabilizes lithium ions and facilitates the formation of lithium bis(trifluoromethanesulfonyl)imide complexes. Perovskite solar cells incorporating 4CP achieve a power conversion efficiency of 26.2% (25.8% certified) and maintain 80% of their initial performance for over 3,000 h at maximum power point tracking. The unencapsulated devices retain 90% of their initial efficiency after 200 thermal shock cycles between −80 °C and 80 °C, and under continuous exposure to 65 °C and 85 °C. The adoption of 4CP could help improve the stability of n–i–p perovskite solar cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Energy
Nature Energy Energy-Energy Engineering and Power Technology
CiteScore
75.10
自引率
1.10%
发文量
193
期刊介绍: Nature Energy is a monthly, online-only journal committed to showcasing the most impactful research on energy, covering everything from its generation and distribution to the societal implications of energy technologies and policies. With a focus on exploring all facets of the ongoing energy discourse, Nature Energy delves into topics such as energy generation, storage, distribution, management, and the societal impacts of energy technologies and policies. Emphasizing studies that push the boundaries of knowledge and contribute to the development of next-generation solutions, the journal serves as a platform for the exchange of ideas among stakeholders at the forefront of the energy sector. Maintaining the hallmark standards of the Nature brand, Nature Energy boasts a dedicated team of professional editors, a rigorous peer-review process, meticulous copy-editing and production, rapid publication times, and editorial independence. In addition to original research articles, Nature Energy also publishes a range of content types, including Comments, Perspectives, Reviews, News & Views, Features, and Correspondence, covering a diverse array of disciplines relevant to the field of energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信