M2B2 MBenes在锂- n2电池负极中的高催化性能的理论研究

IF 3.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Lianming Zhao*, , , Zhumei Jiang, , , Zeyue Peng, , , Tao Ding, , , Guangkun Yan, , , Wenxi Han, , , Yuqi Qiu, , , Jifa Fu, , , Guang Zhao, , , Hao Ren, , , Wei Xing, , and , Jing Xu*, 
{"title":"M2B2 MBenes在锂- n2电池负极中的高催化性能的理论研究","authors":"Lianming Zhao*,&nbsp;, ,&nbsp;Zhumei Jiang,&nbsp;, ,&nbsp;Zeyue Peng,&nbsp;, ,&nbsp;Tao Ding,&nbsp;, ,&nbsp;Guangkun Yan,&nbsp;, ,&nbsp;Wenxi Han,&nbsp;, ,&nbsp;Yuqi Qiu,&nbsp;, ,&nbsp;Jifa Fu,&nbsp;, ,&nbsp;Guang Zhao,&nbsp;, ,&nbsp;Hao Ren,&nbsp;, ,&nbsp;Wei Xing,&nbsp;, and ,&nbsp;Jing Xu*,&nbsp;","doi":"10.1021/acs.langmuir.5c03170","DOIUrl":null,"url":null,"abstract":"<p >Aqueous Li–N<sub>2</sub> batteries are promising electrochemical energy storage devices, but their reaction mechanisms remain controversial. This study employed density functional theory to investigate the catalytic mechanism of M<sub>2</sub>B<sub>2</sub> MBenes (M = Ti, Zr, Hf, Cr, Mo, and W) as cathodes for aqueous Li–N<sub>2</sub> batteries. M<sub>2</sub>B<sub>2</sub> MBenes exhibit high conductivity due to strong d-electron states crossing the Fermi level. IVB-group MBenes (Ti<sub>2</sub>B<sub>2</sub>, Zr<sub>2</sub>B<sub>2</sub>, and Hf<sub>2</sub>B<sub>2</sub>) preferentially adsorb N<sub>2</sub> in side-on modes at hcp sites, while VIB-group MBenes (Cr<sub>2</sub>B<sub>2</sub>, Mo<sub>2</sub>B<sub>2</sub>, and W<sub>2</sub>B<sub>2</sub>) favor face-centered cubic sites, with adsorption strength inversely correlated to metal atomic number. The reaction cycle involves N<sub>2</sub> adsorption, Li<sub>3</sub>N formation via discharge, ammonia synthesis through Li<sub>3</sub>N hydrolysis, and LiOH decomposition during charging. The higher discharging overpotential compared to charging suggests that Li–N<sub>2</sub> batteries operate in a discharge-controlled manner. Both discharge and charge overpotentials follow Hf<sub>2</sub>B<sub>2</sub> &gt; Zr<sub>2</sub>B<sub>2</sub> &gt; Ti<sub>2</sub>B<sub>2</sub> and W<sub>2</sub>B<sub>2</sub> &gt; Mo<sub>2</sub>B<sub>2</sub> &gt; Cr<sub>2</sub>B<sub>2</sub>. The difference in catalytic activity between the IVB-group and VIB-group MBenes arises from distinct adsorption sites and configurations. Notably, Cr<sub>2</sub>B<sub>2</sub> MBene demonstrates exceptional catalytic performance (0.69 V discharge/0.16 V charge overpotentials) attributed to its high d-band center enhancing N<sub>2</sub> adsorption/activation and the distinctive Li<sub>2</sub>NN* intermediate configuration where two Li atoms concentrate at one N terminus facilitating subsequent lithiation. This study establishes a theoretical foundation for designing high-performance Li–N<sub>2</sub> batteries by utilizing tunable electronic properties of MBenes.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"41 37","pages":"25416–25430"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High Catalytic Performance of M2B2 MBenes in Aqueous Li–N2 Battery Cathodes: A Theoretical Study\",\"authors\":\"Lianming Zhao*,&nbsp;, ,&nbsp;Zhumei Jiang,&nbsp;, ,&nbsp;Zeyue Peng,&nbsp;, ,&nbsp;Tao Ding,&nbsp;, ,&nbsp;Guangkun Yan,&nbsp;, ,&nbsp;Wenxi Han,&nbsp;, ,&nbsp;Yuqi Qiu,&nbsp;, ,&nbsp;Jifa Fu,&nbsp;, ,&nbsp;Guang Zhao,&nbsp;, ,&nbsp;Hao Ren,&nbsp;, ,&nbsp;Wei Xing,&nbsp;, and ,&nbsp;Jing Xu*,&nbsp;\",\"doi\":\"10.1021/acs.langmuir.5c03170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Aqueous Li–N<sub>2</sub> batteries are promising electrochemical energy storage devices, but their reaction mechanisms remain controversial. This study employed density functional theory to investigate the catalytic mechanism of M<sub>2</sub>B<sub>2</sub> MBenes (M = Ti, Zr, Hf, Cr, Mo, and W) as cathodes for aqueous Li–N<sub>2</sub> batteries. M<sub>2</sub>B<sub>2</sub> MBenes exhibit high conductivity due to strong d-electron states crossing the Fermi level. IVB-group MBenes (Ti<sub>2</sub>B<sub>2</sub>, Zr<sub>2</sub>B<sub>2</sub>, and Hf<sub>2</sub>B<sub>2</sub>) preferentially adsorb N<sub>2</sub> in side-on modes at hcp sites, while VIB-group MBenes (Cr<sub>2</sub>B<sub>2</sub>, Mo<sub>2</sub>B<sub>2</sub>, and W<sub>2</sub>B<sub>2</sub>) favor face-centered cubic sites, with adsorption strength inversely correlated to metal atomic number. The reaction cycle involves N<sub>2</sub> adsorption, Li<sub>3</sub>N formation via discharge, ammonia synthesis through Li<sub>3</sub>N hydrolysis, and LiOH decomposition during charging. The higher discharging overpotential compared to charging suggests that Li–N<sub>2</sub> batteries operate in a discharge-controlled manner. Both discharge and charge overpotentials follow Hf<sub>2</sub>B<sub>2</sub> &gt; Zr<sub>2</sub>B<sub>2</sub> &gt; Ti<sub>2</sub>B<sub>2</sub> and W<sub>2</sub>B<sub>2</sub> &gt; Mo<sub>2</sub>B<sub>2</sub> &gt; Cr<sub>2</sub>B<sub>2</sub>. The difference in catalytic activity between the IVB-group and VIB-group MBenes arises from distinct adsorption sites and configurations. Notably, Cr<sub>2</sub>B<sub>2</sub> MBene demonstrates exceptional catalytic performance (0.69 V discharge/0.16 V charge overpotentials) attributed to its high d-band center enhancing N<sub>2</sub> adsorption/activation and the distinctive Li<sub>2</sub>NN* intermediate configuration where two Li atoms concentrate at one N terminus facilitating subsequent lithiation. This study establishes a theoretical foundation for designing high-performance Li–N<sub>2</sub> batteries by utilizing tunable electronic properties of MBenes.</p>\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"41 37\",\"pages\":\"25416–25430\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.langmuir.5c03170\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.langmuir.5c03170","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

锂离子电池是一种很有前途的电化学储能装置,但其反应机理仍存在争议。本研究采用密度泛函理论研究了M2B2 MBenes (M = Ti, Zr, Hf, Cr, Mo和W)作为水态锂- n2电池阴极的催化机理。由于强d电子态跨越费米能级,M2B2 MBenes表现出高导电性。ivb - MBenes (Ti2B2、Zr2B2和Hf2B2)倾向于在hcp位点以侧对模式吸附N2,而vib - MBenes (Cr2B2、Mo2B2和W2B2)倾向于面心立方位点,吸附强度与金属原子序数呈负相关。反应周期包括N2吸附、放电生成Li3N、Li3N水解合成氨、充电分解LiOH。与充电相比,更高的放电过电位表明Li-N2电池以放电控制的方式工作。放电过电位和充电过电位依次为Hf2B2 > Zr2B2 > Ti2B2和W2B2 > Mo2B2 > Cr2B2。在ivb组和vib组MBenes之间的催化活性的差异是由于不同的吸附位点和结构。值得注意的是,Cr2B2 MBene表现出优异的催化性能(0.69 V放电/0.16 V电荷过电位),这归功于其高d波段中心增强了N2吸附/活化,以及独特的Li2NN*中间结构,两个Li原子集中在一个N端,促进了随后的锂化。本研究为利用MBenes的可调谐电子特性设计高性能Li-N2电池奠定了理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High Catalytic Performance of M2B2 MBenes in Aqueous Li–N2 Battery Cathodes: A Theoretical Study

High Catalytic Performance of M2B2 MBenes in Aqueous Li–N2 Battery Cathodes: A Theoretical Study

Aqueous Li–N2 batteries are promising electrochemical energy storage devices, but their reaction mechanisms remain controversial. This study employed density functional theory to investigate the catalytic mechanism of M2B2 MBenes (M = Ti, Zr, Hf, Cr, Mo, and W) as cathodes for aqueous Li–N2 batteries. M2B2 MBenes exhibit high conductivity due to strong d-electron states crossing the Fermi level. IVB-group MBenes (Ti2B2, Zr2B2, and Hf2B2) preferentially adsorb N2 in side-on modes at hcp sites, while VIB-group MBenes (Cr2B2, Mo2B2, and W2B2) favor face-centered cubic sites, with adsorption strength inversely correlated to metal atomic number. The reaction cycle involves N2 adsorption, Li3N formation via discharge, ammonia synthesis through Li3N hydrolysis, and LiOH decomposition during charging. The higher discharging overpotential compared to charging suggests that Li–N2 batteries operate in a discharge-controlled manner. Both discharge and charge overpotentials follow Hf2B2 > Zr2B2 > Ti2B2 and W2B2 > Mo2B2 > Cr2B2. The difference in catalytic activity between the IVB-group and VIB-group MBenes arises from distinct adsorption sites and configurations. Notably, Cr2B2 MBene demonstrates exceptional catalytic performance (0.69 V discharge/0.16 V charge overpotentials) attributed to its high d-band center enhancing N2 adsorption/activation and the distinctive Li2NN* intermediate configuration where two Li atoms concentrate at one N terminus facilitating subsequent lithiation. This study establishes a theoretical foundation for designing high-performance Li–N2 batteries by utilizing tunable electronic properties of MBenes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信