Da Huang, Yu Du, Haoyang Hu, Shicheng Yan* and Zhigang Zou,
{"title":"质子化使商业TiO2/IrO2持久有效的水氧化。","authors":"Da Huang, Yu Du, Haoyang Hu, Shicheng Yan* and Zhigang Zou, ","doi":"10.1021/acs.jpclett.5c02227","DOIUrl":null,"url":null,"abstract":"<p >The oxygen evolution reaction (OER) performance of commercial TiO<sub>2</sub>-supported IrO<sub>2</sub> (IrO<sub>2</sub>/TiO<sub>2</sub>) suffers from the high electron transfer barriers at the IrO<sub>2</sub>/TiO<sub>2</sub> interface. Herein, we develop a cathodic polarization strategy to protonate TiO<sub>2</sub> (p-TiO<sub>2</sub>) in a commercial IrO<sub>2</sub>/TiO<sub>2</sub> catalyst. The high-density Ti<sup>3+</sup>–OH polaronic states on the surface of protonated TiO<sub>2</sub> greatly contribute to the decrease in the electron transfer barriers at the IrO<sub>2</sub>/TiO<sub>2</sub> interface. As a result, the IrO<sub>2</sub>/p-TiO<sub>2</sub> catalyst exhibits an ultralow overpotential of 246 ± 3 mV at 10 mA/cm<sup>2</sup> and durability over 200 h, attributed to electron compensation from Ti<sup>3+</sup>–OH states suppressing active Ir overoxidation. This electrochemical modification, requiring neither a complex apparatus nor high-temperature processing, establishes a new paradigm for designing high-performance anode catalysts.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"16 37","pages":"9753–9759"},"PeriodicalIF":4.6000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protonation Enables Durable and Efficient Water Oxidation on Commercial TiO2/IrO2\",\"authors\":\"Da Huang, Yu Du, Haoyang Hu, Shicheng Yan* and Zhigang Zou, \",\"doi\":\"10.1021/acs.jpclett.5c02227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The oxygen evolution reaction (OER) performance of commercial TiO<sub>2</sub>-supported IrO<sub>2</sub> (IrO<sub>2</sub>/TiO<sub>2</sub>) suffers from the high electron transfer barriers at the IrO<sub>2</sub>/TiO<sub>2</sub> interface. Herein, we develop a cathodic polarization strategy to protonate TiO<sub>2</sub> (p-TiO<sub>2</sub>) in a commercial IrO<sub>2</sub>/TiO<sub>2</sub> catalyst. The high-density Ti<sup>3+</sup>–OH polaronic states on the surface of protonated TiO<sub>2</sub> greatly contribute to the decrease in the electron transfer barriers at the IrO<sub>2</sub>/TiO<sub>2</sub> interface. As a result, the IrO<sub>2</sub>/p-TiO<sub>2</sub> catalyst exhibits an ultralow overpotential of 246 ± 3 mV at 10 mA/cm<sup>2</sup> and durability over 200 h, attributed to electron compensation from Ti<sup>3+</sup>–OH states suppressing active Ir overoxidation. This electrochemical modification, requiring neither a complex apparatus nor high-temperature processing, establishes a new paradigm for designing high-performance anode catalysts.</p>\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\"16 37\",\"pages\":\"9753–9759\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c02227\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c02227","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Protonation Enables Durable and Efficient Water Oxidation on Commercial TiO2/IrO2
The oxygen evolution reaction (OER) performance of commercial TiO2-supported IrO2 (IrO2/TiO2) suffers from the high electron transfer barriers at the IrO2/TiO2 interface. Herein, we develop a cathodic polarization strategy to protonate TiO2 (p-TiO2) in a commercial IrO2/TiO2 catalyst. The high-density Ti3+–OH polaronic states on the surface of protonated TiO2 greatly contribute to the decrease in the electron transfer barriers at the IrO2/TiO2 interface. As a result, the IrO2/p-TiO2 catalyst exhibits an ultralow overpotential of 246 ± 3 mV at 10 mA/cm2 and durability over 200 h, attributed to electron compensation from Ti3+–OH states suppressing active Ir overoxidation. This electrochemical modification, requiring neither a complex apparatus nor high-temperature processing, establishes a new paradigm for designing high-performance anode catalysts.
期刊介绍:
The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.