间隙碘诱导的深阱钉钉抑制TiO2/钙钛矿界面的自愈。

IF 4.6 2区 化学 Q2 CHEMISTRY, PHYSICAL
Kai-Ping Wang, Hui Liang, Xi-Meng Tang, Bo Wen, Chuan-Jia Tong* and Oleg V. Prezhdo, 
{"title":"间隙碘诱导的深阱钉钉抑制TiO2/钙钛矿界面的自愈。","authors":"Kai-Ping Wang,&nbsp;Hui Liang,&nbsp;Xi-Meng Tang,&nbsp;Bo Wen,&nbsp;Chuan-Jia Tong* and Oleg V. Prezhdo,&nbsp;","doi":"10.1021/acs.jpclett.5c02430","DOIUrl":null,"url":null,"abstract":"<p >Defects significantly influence charge transport in CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> (MAPbI<sub>3</sub>) perovskite solar cells, particularly at interfaces. Using quantum dynamics simulation, we reveal a distinct interstitial iodine (I<sub>i</sub>) defect behavior at different positions in the TiO<sub>2</sub>/MAPbI<sub>3</sub> system. In the perovskite bulk-like region, I<sub>i</sub> exhibits high mobility and dissociates detrimental iodine trimers, facilitating small-to-large polaron transition and promoting shallow trap formation. In contrast, the interfacial I<sub>i</sub> defect enhances local structural rigidity due to its strong interaction with undercoordinated Ti atoms and MA molecular dipoles, which unexpectedly pins the deep trap state and suppresses its inherent self-healing capability. This leads to polaron localization and accelerates nonradiative recombination by 2 orders of magnitude. The results reveal the mechanism of deep-trap-pinning due to an interstitial I<sub>i</sub> defect at perovskite interfaces, which offers theoretical guidance for minimizing charge losses in highly efficient perovskite solar cells.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"16 37","pages":"9776–9784"},"PeriodicalIF":4.6000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interstitial Iodine Induced Deep-Trap-Pinning Suppresses Self-Healing at the TiO2/Perovskite Interface\",\"authors\":\"Kai-Ping Wang,&nbsp;Hui Liang,&nbsp;Xi-Meng Tang,&nbsp;Bo Wen,&nbsp;Chuan-Jia Tong* and Oleg V. Prezhdo,&nbsp;\",\"doi\":\"10.1021/acs.jpclett.5c02430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Defects significantly influence charge transport in CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> (MAPbI<sub>3</sub>) perovskite solar cells, particularly at interfaces. Using quantum dynamics simulation, we reveal a distinct interstitial iodine (I<sub>i</sub>) defect behavior at different positions in the TiO<sub>2</sub>/MAPbI<sub>3</sub> system. In the perovskite bulk-like region, I<sub>i</sub> exhibits high mobility and dissociates detrimental iodine trimers, facilitating small-to-large polaron transition and promoting shallow trap formation. In contrast, the interfacial I<sub>i</sub> defect enhances local structural rigidity due to its strong interaction with undercoordinated Ti atoms and MA molecular dipoles, which unexpectedly pins the deep trap state and suppresses its inherent self-healing capability. This leads to polaron localization and accelerates nonradiative recombination by 2 orders of magnitude. The results reveal the mechanism of deep-trap-pinning due to an interstitial I<sub>i</sub> defect at perovskite interfaces, which offers theoretical guidance for minimizing charge losses in highly efficient perovskite solar cells.</p>\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\"16 37\",\"pages\":\"9776–9784\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c02430\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c02430","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

缺陷显著影响CH3NH3PbI3 (MAPbI3)钙钛矿太阳能电池中的电荷输运,特别是在界面处。通过量子动力学模拟,我们揭示了TiO2/MAPbI3体系中不同位置的间隙碘(Ii)缺陷行为。在钙钛矿块状区域,Ii表现出高迁移率并解离有害的碘三聚体,促进小极化子到大极化子的转变并促进浅陷阱的形成。相反,界面Ii缺陷由于其与欠配位的Ti原子和MA分子偶极子的强相互作用而增强了局部结构刚度,这意外地固定了深阱状态并抑制了其固有的自愈能力。这导致极化子局域化,并将非辐射复合加速2个数量级。研究结果揭示了钙钛矿界面间隙缺陷导致的深阱钉钉机理,为高效钙钛矿太阳能电池的电荷损失最小化提供了理论指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Interstitial Iodine Induced Deep-Trap-Pinning Suppresses Self-Healing at the TiO2/Perovskite Interface

Interstitial Iodine Induced Deep-Trap-Pinning Suppresses Self-Healing at the TiO2/Perovskite Interface

Defects significantly influence charge transport in CH3NH3PbI3 (MAPbI3) perovskite solar cells, particularly at interfaces. Using quantum dynamics simulation, we reveal a distinct interstitial iodine (Ii) defect behavior at different positions in the TiO2/MAPbI3 system. In the perovskite bulk-like region, Ii exhibits high mobility and dissociates detrimental iodine trimers, facilitating small-to-large polaron transition and promoting shallow trap formation. In contrast, the interfacial Ii defect enhances local structural rigidity due to its strong interaction with undercoordinated Ti atoms and MA molecular dipoles, which unexpectedly pins the deep trap state and suppresses its inherent self-healing capability. This leads to polaron localization and accelerates nonradiative recombination by 2 orders of magnitude. The results reveal the mechanism of deep-trap-pinning due to an interstitial Ii defect at perovskite interfaces, which offers theoretical guidance for minimizing charge losses in highly efficient perovskite solar cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信