景观基因组学分析揭示了绒山羊和奶山羊适应寒冷环境的遗传基础。

IF 5.8
Jianqing Zhao, Weiwei Yao, Qingqing Liu, Ping Gong, Yuanpan Mu, Wei Wang, Baolong Liu, Cong Li, Hengbo Shi, Jun Luo
{"title":"景观基因组学分析揭示了绒山羊和奶山羊适应寒冷环境的遗传基础。","authors":"Jianqing Zhao, Weiwei Yao, Qingqing Liu, Ping Gong, Yuanpan Mu, Wei Wang, Baolong Liu, Cong Li, Hengbo Shi, Jun Luo","doi":"10.1007/s44154-025-00254-5","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the genetic mechanism of cold adaptation in cashmere goats and dairy goats is very important to improve their production performance. The purpose of this study was to comprehensively analyze the genetic basis of goat adaptation to cold environments, clarify the impact of environmental factors on genome diversity, and lay the foundation for breeding goat breeds to adapt to climate change. A total of 240 dairy goats were subjected to genome resequencing, and the whole genome sequencing data of 57 individuals from 6 published breeds were incorporated. By integrating multiple approaches such as phylogenetic analysis, population structure analysis, gene flow and population history exploration, selection signal analysis, and genome-environment association analysis, an in-depth investigation was carried out. Phylogenetic analysis unraveled the genetic relationships and differentiation patterns among dairy goats and other goat breeds. Through signal analysis (θπ, FST, XP-CLR), we identified numerous candidate genes associated with cold adaptation in dairy goats (STRIP1, ALX3, HTR4, NTRK2, MRPL11, PELI3, DPP3, BBS1) and cashmere goats (MED12L, MARC2, MARC1, DSG3, C6H4orf22, CHD7, MYPN, KIAA0825, MITF). Genome-environment association (GEA) analysis confirmed the link between these genes and environmental factors. Moreover, a detailed analysis of the critical genes C6H4orf22 and STRIP1 demonstrated their significant roles in the geographical variations of cold adaptation and allele frequency differences among different breeds. This study contributes to understanding the genetic basis of cold adaptation, providing crucial theoretical support for precision breeding programs aimed at improving production performance in cold regions by leveraging adaptive alleles, thereby ensuring sustainable animal husbandry.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"5 1","pages":"56"},"PeriodicalIF":5.8000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12420540/pdf/","citationCount":"0","resultStr":"{\"title\":\"Landscape genomics analysis reveals the genetic basis underlying cashmere goats and dairy goats adaptation to frigid environments.\",\"authors\":\"Jianqing Zhao, Weiwei Yao, Qingqing Liu, Ping Gong, Yuanpan Mu, Wei Wang, Baolong Liu, Cong Li, Hengbo Shi, Jun Luo\",\"doi\":\"10.1007/s44154-025-00254-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding the genetic mechanism of cold adaptation in cashmere goats and dairy goats is very important to improve their production performance. The purpose of this study was to comprehensively analyze the genetic basis of goat adaptation to cold environments, clarify the impact of environmental factors on genome diversity, and lay the foundation for breeding goat breeds to adapt to climate change. A total of 240 dairy goats were subjected to genome resequencing, and the whole genome sequencing data of 57 individuals from 6 published breeds were incorporated. By integrating multiple approaches such as phylogenetic analysis, population structure analysis, gene flow and population history exploration, selection signal analysis, and genome-environment association analysis, an in-depth investigation was carried out. Phylogenetic analysis unraveled the genetic relationships and differentiation patterns among dairy goats and other goat breeds. Through signal analysis (θπ, FST, XP-CLR), we identified numerous candidate genes associated with cold adaptation in dairy goats (STRIP1, ALX3, HTR4, NTRK2, MRPL11, PELI3, DPP3, BBS1) and cashmere goats (MED12L, MARC2, MARC1, DSG3, C6H4orf22, CHD7, MYPN, KIAA0825, MITF). Genome-environment association (GEA) analysis confirmed the link between these genes and environmental factors. Moreover, a detailed analysis of the critical genes C6H4orf22 and STRIP1 demonstrated their significant roles in the geographical variations of cold adaptation and allele frequency differences among different breeds. This study contributes to understanding the genetic basis of cold adaptation, providing crucial theoretical support for precision breeding programs aimed at improving production performance in cold regions by leveraging adaptive alleles, thereby ensuring sustainable animal husbandry.</p>\",\"PeriodicalId\":74874,\"journal\":{\"name\":\"Stress biology\",\"volume\":\"5 1\",\"pages\":\"56\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12420540/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stress biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s44154-025-00254-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stress biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44154-025-00254-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

了解绒山羊和奶山羊冷适应的遗传机制对提高绒山羊和奶山羊的生产性能具有重要意义。本研究旨在全面分析山羊适应寒冷环境的遗传基础,明确环境因素对基因组多样性的影响,为培育适应气候变化的山羊品种奠定基础。对240只奶山羊进行基因组重测序,并纳入6个已发表品种的57只个体的全基因组测序数据。综合运用系统发育分析、种群结构分析、基因流与种群历史探索、选择信号分析、基因组与环境关联分析等多种方法,对其进行深入研究。系统发育分析揭示了奶山羊和其他山羊品种之间的遗传关系和分化模式。通过信号分析(θπ, FST, XP-CLR),我们在奶山羊(STRIP1, ALX3, HTR4, NTRK2, MRPL11, PELI3, DPP3, BBS1)和绒山羊(MED12L, MARC2, MARC1, DSG3, C6H4orf22, CHD7, MYPN, KIAA0825, MITF)中发现了许多与冷适应相关的候选基因。基因组环境关联(GEA)分析证实了这些基因与环境因素之间的联系。此外,对关键基因C6H4orf22和STRIP1的详细分析表明,它们在不同品种的冷适应地理变异和等位基因频率差异中发挥了重要作用。该研究有助于了解寒冷适应的遗传基础,为通过利用适应性等位基因提高寒冷地区生产性能的精准育种计划提供重要的理论支持,从而确保畜牧业的可持续发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Landscape genomics analysis reveals the genetic basis underlying cashmere goats and dairy goats adaptation to frigid environments.

Landscape genomics analysis reveals the genetic basis underlying cashmere goats and dairy goats adaptation to frigid environments.

Landscape genomics analysis reveals the genetic basis underlying cashmere goats and dairy goats adaptation to frigid environments.

Landscape genomics analysis reveals the genetic basis underlying cashmere goats and dairy goats adaptation to frigid environments.

Understanding the genetic mechanism of cold adaptation in cashmere goats and dairy goats is very important to improve their production performance. The purpose of this study was to comprehensively analyze the genetic basis of goat adaptation to cold environments, clarify the impact of environmental factors on genome diversity, and lay the foundation for breeding goat breeds to adapt to climate change. A total of 240 dairy goats were subjected to genome resequencing, and the whole genome sequencing data of 57 individuals from 6 published breeds were incorporated. By integrating multiple approaches such as phylogenetic analysis, population structure analysis, gene flow and population history exploration, selection signal analysis, and genome-environment association analysis, an in-depth investigation was carried out. Phylogenetic analysis unraveled the genetic relationships and differentiation patterns among dairy goats and other goat breeds. Through signal analysis (θπ, FST, XP-CLR), we identified numerous candidate genes associated with cold adaptation in dairy goats (STRIP1, ALX3, HTR4, NTRK2, MRPL11, PELI3, DPP3, BBS1) and cashmere goats (MED12L, MARC2, MARC1, DSG3, C6H4orf22, CHD7, MYPN, KIAA0825, MITF). Genome-environment association (GEA) analysis confirmed the link between these genes and environmental factors. Moreover, a detailed analysis of the critical genes C6H4orf22 and STRIP1 demonstrated their significant roles in the geographical variations of cold adaptation and allele frequency differences among different breeds. This study contributes to understanding the genetic basis of cold adaptation, providing crucial theoretical support for precision breeding programs aimed at improving production performance in cold regions by leveraging adaptive alleles, thereby ensuring sustainable animal husbandry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信