真实皮质解剖中经颅交流电刺激神经夹带的多尺度模型。

IF 2 4区 医学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Xuelin Huang, Xile Wei, Jiang Wang, Guosheng Yi
{"title":"真实皮质解剖中经颅交流电刺激神经夹带的多尺度模型。","authors":"Xuelin Huang, Xile Wei, Jiang Wang, Guosheng Yi","doi":"10.1007/s10827-025-00912-7","DOIUrl":null,"url":null,"abstract":"<p><p>Transcranial alternating current stimulation (tACS) enables non-invasive modulation of brain activity, holding promise for cognitive research and clinical applications. However, it remains unclear how the spiking activity of cortical neurons is modulated by specific electric field (E-field) distributions. Here, we use a multi-scale computational framework that integrates an anatomically accurate head model with morphologically realistic neuron models to simulate the responses of layer 5 pyramidal cells (L5 PCs) to the E-fields generated by conventional M1-SO tACS. Neural entrainment is quantified by calculating the phase-locking value (PLV) and preferred phase (PPh). We find that the tACS-induced E-field distributions across the L5 surface of interest (SOI) are heterogeneous, resulting in diverse neural entrainment of L5 PCs due to their sensitivities to the direction and intensity of the E-fields. Both PLV and PPh follow a smooth cosine dependency on the E-field polar angle, with minimal sensitivity to the azimuthal angle. PLV exhibits a positive linear dependence on the E-field intensity. However, PPh either increases or decreases logarithmically with E-field intensity that depends on the E-field direction. Correlation analysis reveals that neural entrainment can be largely explained by the normal component of the E-field or by somatic polarization, especially for E-field directed outward relative to the cortical surface. Moreover, cell morphology plays a crucial role in shaping the diverse neural entrainment to tACS. Although the uniform E-field extracted at the soma provides a good approximation for modeling tACS at the cellular level, the non-uniform E-field distribution should be considered for investigating more accurate cellular mechanisms of tACS. These findings highlight the crucial roles of heterogeneous E-field distributions, cell morphology, and E-field non-uniformity in modulating neuronal spiking activity by tACS in realistic neuroanatomy, deepening our understanding of the cellular mechanism underlying tACS. Our work bridges macroscopic brain stimulation with microscopic neural activity, which benefits the development of brain models and derived clinical applications relying on model-driven brain stimulation with tACS-induced weak E-fields.</p>","PeriodicalId":54857,"journal":{"name":"Journal of Computational Neuroscience","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-scale model of neural entrainment by transcranial alternating current stimulation in realistic cortical anatomy.\",\"authors\":\"Xuelin Huang, Xile Wei, Jiang Wang, Guosheng Yi\",\"doi\":\"10.1007/s10827-025-00912-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transcranial alternating current stimulation (tACS) enables non-invasive modulation of brain activity, holding promise for cognitive research and clinical applications. However, it remains unclear how the spiking activity of cortical neurons is modulated by specific electric field (E-field) distributions. Here, we use a multi-scale computational framework that integrates an anatomically accurate head model with morphologically realistic neuron models to simulate the responses of layer 5 pyramidal cells (L5 PCs) to the E-fields generated by conventional M1-SO tACS. Neural entrainment is quantified by calculating the phase-locking value (PLV) and preferred phase (PPh). We find that the tACS-induced E-field distributions across the L5 surface of interest (SOI) are heterogeneous, resulting in diverse neural entrainment of L5 PCs due to their sensitivities to the direction and intensity of the E-fields. Both PLV and PPh follow a smooth cosine dependency on the E-field polar angle, with minimal sensitivity to the azimuthal angle. PLV exhibits a positive linear dependence on the E-field intensity. However, PPh either increases or decreases logarithmically with E-field intensity that depends on the E-field direction. Correlation analysis reveals that neural entrainment can be largely explained by the normal component of the E-field or by somatic polarization, especially for E-field directed outward relative to the cortical surface. Moreover, cell morphology plays a crucial role in shaping the diverse neural entrainment to tACS. Although the uniform E-field extracted at the soma provides a good approximation for modeling tACS at the cellular level, the non-uniform E-field distribution should be considered for investigating more accurate cellular mechanisms of tACS. These findings highlight the crucial roles of heterogeneous E-field distributions, cell morphology, and E-field non-uniformity in modulating neuronal spiking activity by tACS in realistic neuroanatomy, deepening our understanding of the cellular mechanism underlying tACS. Our work bridges macroscopic brain stimulation with microscopic neural activity, which benefits the development of brain models and derived clinical applications relying on model-driven brain stimulation with tACS-induced weak E-fields.</p>\",\"PeriodicalId\":54857,\"journal\":{\"name\":\"Journal of Computational Neuroscience\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10827-025-00912-7\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10827-025-00912-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

经颅交流电刺激(tACS)实现了大脑活动的非侵入性调节,为认知研究和临床应用带来了希望。然而,目前还不清楚皮层神经元的尖峰活动是如何被特定的电场(E-field)分布所调节的。在这里,我们使用了一个多尺度计算框架,将解剖学上精确的头部模型与形态学上真实的神经元模型相结合,来模拟第5层锥体细胞(L5 PCs)对传统M1-SO tac产生的电场的反应。通过计算锁相值(PLV)和首选相位(PPh)来量化神经夹带。我们发现tacs诱导的L5感兴趣面(SOI)上的电场分布是不均匀的,由于L5 pc对电场方向和强度的敏感性,导致L5 pc的神经夹带是不同的。PLV和PPh都遵循一个平滑的余弦依赖于e场极角,对方位角的敏感性最小。PLV与电场强度呈线性正相关。然而,PPh随电场强度呈对数增加或减少,这取决于电场方向。相关分析表明,神经夹带在很大程度上可以用电场的正常成分或体细胞极化来解释,特别是相对于皮层表面向外的电场。此外,细胞形态在形成对tACS的不同神经夹带中起着至关重要的作用。尽管在胞体处提取的均匀电场为在细胞水平上模拟tACS提供了很好的近似,但为了研究更准确的tACS细胞机制,应考虑非均匀电场分布。这些发现强调了在现实神经解剖学中,异质电场分布、细胞形态和电场不均匀性在tACS调节神经元尖峰活动中的重要作用,加深了我们对tACS细胞机制的理解。我们的工作将宏观脑刺激与微观神经活动联系起来,这有利于依靠tacs诱导的弱电场驱动的模型脑刺激的发展和衍生的临床应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-scale model of neural entrainment by transcranial alternating current stimulation in realistic cortical anatomy.

Transcranial alternating current stimulation (tACS) enables non-invasive modulation of brain activity, holding promise for cognitive research and clinical applications. However, it remains unclear how the spiking activity of cortical neurons is modulated by specific electric field (E-field) distributions. Here, we use a multi-scale computational framework that integrates an anatomically accurate head model with morphologically realistic neuron models to simulate the responses of layer 5 pyramidal cells (L5 PCs) to the E-fields generated by conventional M1-SO tACS. Neural entrainment is quantified by calculating the phase-locking value (PLV) and preferred phase (PPh). We find that the tACS-induced E-field distributions across the L5 surface of interest (SOI) are heterogeneous, resulting in diverse neural entrainment of L5 PCs due to their sensitivities to the direction and intensity of the E-fields. Both PLV and PPh follow a smooth cosine dependency on the E-field polar angle, with minimal sensitivity to the azimuthal angle. PLV exhibits a positive linear dependence on the E-field intensity. However, PPh either increases or decreases logarithmically with E-field intensity that depends on the E-field direction. Correlation analysis reveals that neural entrainment can be largely explained by the normal component of the E-field or by somatic polarization, especially for E-field directed outward relative to the cortical surface. Moreover, cell morphology plays a crucial role in shaping the diverse neural entrainment to tACS. Although the uniform E-field extracted at the soma provides a good approximation for modeling tACS at the cellular level, the non-uniform E-field distribution should be considered for investigating more accurate cellular mechanisms of tACS. These findings highlight the crucial roles of heterogeneous E-field distributions, cell morphology, and E-field non-uniformity in modulating neuronal spiking activity by tACS in realistic neuroanatomy, deepening our understanding of the cellular mechanism underlying tACS. Our work bridges macroscopic brain stimulation with microscopic neural activity, which benefits the development of brain models and derived clinical applications relying on model-driven brain stimulation with tACS-induced weak E-fields.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
8.30%
发文量
32
审稿时长
3 months
期刊介绍: The Journal of Computational Neuroscience provides a forum for papers that fit the interface between computational and experimental work in the neurosciences. The Journal of Computational Neuroscience publishes full length original papers, rapid communications and review articles describing theoretical and experimental work relevant to computations in the brain and nervous system. Papers that combine theoretical and experimental work are especially encouraged. Primarily theoretical papers should deal with issues of obvious relevance to biological nervous systems. Experimental papers should have implications for the computational function of the nervous system, and may report results using any of a variety of approaches including anatomy, electrophysiology, biophysics, imaging, and molecular biology. Papers investigating the physiological mechanisms underlying pathologies of the nervous system, or papers that report novel technologies of interest to researchers in computational neuroscience, including advances in neural data analysis methods yielding insights into the function of the nervous system, are also welcomed (in this case, methodological papers should include an application of the new method, exemplifying the insights that it yields).It is anticipated that all levels of analysis from cognitive to cellular will be represented in the Journal of Computational Neuroscience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信