用于阻塞性睡眠呼吸暂停的新兴生物传感器技术:全面概述和未来展望。

3区 生物学 Q2 Biochemistry, Genetics and Molecular Biology
Chih-Wei Tsai, Lydia Leung, Hung Tat Chen, Ka Cheung Kwok, Michelle Lee, Ambrose A Chiang
{"title":"用于阻塞性睡眠呼吸暂停的新兴生物传感器技术:全面概述和未来展望。","authors":"Chih-Wei Tsai, Lydia Leung, Hung Tat Chen, Ka Cheung Kwok, Michelle Lee, Ambrose A Chiang","doi":"10.1016/bs.pmbts.2025.06.002","DOIUrl":null,"url":null,"abstract":"<p><p>Obstructive sleep apnea (OSA) is a pervasive disorder characterized by recurrent airway obstructions during sleep. OSA carries serious health risks, such as cardiovascular and cognitive impairments, and imposes a significant economic burden. This chapter provides a comprehensive overview of various biosensors currently employed for OSA detection, including in-lab polysomnography and flow-based home sleep apnea testing. It also explores cutting-edge OSA-detecting technologies that often leverage advanced, artificial intelligence-powered sensing modalities, encompassing photoplethysmography/peripheral arterial tonometry-based, sound-based, and respiratory effort-based wearables. Moreover, this chapter examines promising diagnostic and screening solutions, including airables, bed/mattress sensors, and smartphone sensors. It also delves into emerging sensing technologies currently under active investigation, including earables/hearables and remote PPG. This review serves as a practical guide to understanding the mechanisms, capabilities, limitations, and clinical evidence surrounding both modern and future sensors poised to revolutionize the landscape of OSA detection.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"216 ","pages":"185-232"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emerging biosensor technologies for obstructive sleep apnea: A comprehensive overview and future prospects.\",\"authors\":\"Chih-Wei Tsai, Lydia Leung, Hung Tat Chen, Ka Cheung Kwok, Michelle Lee, Ambrose A Chiang\",\"doi\":\"10.1016/bs.pmbts.2025.06.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Obstructive sleep apnea (OSA) is a pervasive disorder characterized by recurrent airway obstructions during sleep. OSA carries serious health risks, such as cardiovascular and cognitive impairments, and imposes a significant economic burden. This chapter provides a comprehensive overview of various biosensors currently employed for OSA detection, including in-lab polysomnography and flow-based home sleep apnea testing. It also explores cutting-edge OSA-detecting technologies that often leverage advanced, artificial intelligence-powered sensing modalities, encompassing photoplethysmography/peripheral arterial tonometry-based, sound-based, and respiratory effort-based wearables. Moreover, this chapter examines promising diagnostic and screening solutions, including airables, bed/mattress sensors, and smartphone sensors. It also delves into emerging sensing technologies currently under active investigation, including earables/hearables and remote PPG. This review serves as a practical guide to understanding the mechanisms, capabilities, limitations, and clinical evidence surrounding both modern and future sensors poised to revolutionize the landscape of OSA detection.</p>\",\"PeriodicalId\":21157,\"journal\":{\"name\":\"Progress in molecular biology and translational science\",\"volume\":\"216 \",\"pages\":\"185-232\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in molecular biology and translational science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.pmbts.2025.06.002\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in molecular biology and translational science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.pmbts.2025.06.002","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

阻塞性睡眠呼吸暂停(OSA)是一种普遍存在的障碍,其特征是睡眠期间反复出现气道阻塞。阻塞性睡眠呼吸暂停会带来严重的健康风险,如心血管和认知障碍,并造成重大的经济负担。本章全面概述了目前用于OSA检测的各种生物传感器,包括实验室多导睡眠图和基于流的家庭睡眠呼吸暂停测试。它还探索了尖端的osa检测技术,这些技术通常利用先进的、人工智能驱动的传感模式,包括基于光容积脉搏图/外周动脉血压计、基于声音和基于呼吸努力的可穿戴设备。此外,本章还探讨了有前途的诊断和筛查解决方案,包括空气传感器、床/床垫传感器和智能手机传感器。它还深入研究了目前正在积极研究的新兴传感技术,包括可穿戴设备/可听设备和远程PPG。这篇综述为理解现代和未来传感器的机制、能力、局限性和临床证据提供了实用指南,这些传感器有望彻底改变OSA检测的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Emerging biosensor technologies for obstructive sleep apnea: A comprehensive overview and future prospects.

Obstructive sleep apnea (OSA) is a pervasive disorder characterized by recurrent airway obstructions during sleep. OSA carries serious health risks, such as cardiovascular and cognitive impairments, and imposes a significant economic burden. This chapter provides a comprehensive overview of various biosensors currently employed for OSA detection, including in-lab polysomnography and flow-based home sleep apnea testing. It also explores cutting-edge OSA-detecting technologies that often leverage advanced, artificial intelligence-powered sensing modalities, encompassing photoplethysmography/peripheral arterial tonometry-based, sound-based, and respiratory effort-based wearables. Moreover, this chapter examines promising diagnostic and screening solutions, including airables, bed/mattress sensors, and smartphone sensors. It also delves into emerging sensing technologies currently under active investigation, including earables/hearables and remote PPG. This review serves as a practical guide to understanding the mechanisms, capabilities, limitations, and clinical evidence surrounding both modern and future sensors poised to revolutionize the landscape of OSA detection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Progress in Molecular Biology and Translational Science (PMBTS) provides in-depth reviews on topics of exceptional scientific importance. If today you read an Article or Letter in Nature or a Research Article or Report in Science reporting findings of exceptional importance, you likely will find comprehensive coverage of that research area in a future PMBTS volume.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信