在microrna介导的调控中,周期性信号优于恒定信号。

IF 13.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Elsi Ferro, Candela L Szischik, Alejandra C Ventura, Carla Bosia
{"title":"在microrna介导的调控中,周期性信号优于恒定信号。","authors":"Elsi Ferro, Candela L Szischik, Alejandra C Ventura, Carla Bosia","doi":"10.1093/nar/gkaf867","DOIUrl":null,"url":null,"abstract":"<p><p>Cells may exploit oscillatory gene expression to encode biological information. Temporal features of oscillations, such as pulse frequency and amplitude, are determinant for the outcome of signalling pathways. However, little effort has been devoted to unveiling the role of pulsatility in the context of post-transcriptional gene regulation, where microRNAs act by binding to RNAs and regulate their expression. Here, we study the effects of periodic against constant microRNA synthesis within minimal microRNA-target networks. We find that there is a repressive advantage of pulsatile over constant microRNA synthesis, and that the extent of repression depends on the frequency of pulses, thus uncovering frequency preference behaviours. We show that the preference for specific input frequencies is determined by relative microRNA and target kinetic rates and can lead to exclusive frequency-dependent repression on distinct RNA species, thereby highlighting a potential mechanism of selective dynamical target regulation. Moreover, we show that frequencies observed in periodically expressed microRNAs, such as those involved in circadian rhythms and development, can be selectively favored. Our findings might have implications for experimental studies aimed at understanding how periodic patterns drive biological responses through microRNA-mediated signalling and provide suggestions for validation in synthetic networks.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"53 17","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12418391/pdf/","citationCount":"0","resultStr":"{\"title\":\"The advantage of periodic over constant signalling in microRNA-mediated regulation.\",\"authors\":\"Elsi Ferro, Candela L Szischik, Alejandra C Ventura, Carla Bosia\",\"doi\":\"10.1093/nar/gkaf867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cells may exploit oscillatory gene expression to encode biological information. Temporal features of oscillations, such as pulse frequency and amplitude, are determinant for the outcome of signalling pathways. However, little effort has been devoted to unveiling the role of pulsatility in the context of post-transcriptional gene regulation, where microRNAs act by binding to RNAs and regulate their expression. Here, we study the effects of periodic against constant microRNA synthesis within minimal microRNA-target networks. We find that there is a repressive advantage of pulsatile over constant microRNA synthesis, and that the extent of repression depends on the frequency of pulses, thus uncovering frequency preference behaviours. We show that the preference for specific input frequencies is determined by relative microRNA and target kinetic rates and can lead to exclusive frequency-dependent repression on distinct RNA species, thereby highlighting a potential mechanism of selective dynamical target regulation. Moreover, we show that frequencies observed in periodically expressed microRNAs, such as those involved in circadian rhythms and development, can be selectively favored. Our findings might have implications for experimental studies aimed at understanding how periodic patterns drive biological responses through microRNA-mediated signalling and provide suggestions for validation in synthetic networks.</p>\",\"PeriodicalId\":19471,\"journal\":{\"name\":\"Nucleic Acids Research\",\"volume\":\"53 17\",\"pages\":\"\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12418391/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleic Acids Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/nar/gkaf867\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf867","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

细胞可以利用振荡基因表达来编码生物信息。振荡的时间特征,如脉冲频率和幅度,是信号通路结果的决定因素。然而,很少有人致力于揭示脉动性在转录后基因调控中的作用,在转录后基因调控中,microRNAs通过与rna结合并调节其表达而起作用。在这里,我们研究了在最小的microRNA靶标网络中周期性与恒定microRNA合成的影响。我们发现脉冲比恒定的microRNA合成有抑制优势,并且抑制的程度取决于脉冲的频率,从而揭示频率偏好行为。我们发现,对特定输入频率的偏好是由相对microRNA和靶标动力学速率决定的,并可能导致对不同RNA物种的频率依赖性抑制,从而突出了选择性动态靶标调控的潜在机制。此外,我们还发现,在周期性表达的microrna中观察到的频率,例如那些参与昼夜节律和发育的microrna,可以选择性地受到青睐。我们的发现可能对旨在理解周期性模式如何通过microrna介导的信号传导驱动生物反应的实验研究产生影响,并为合成网络的验证提供建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The advantage of periodic over constant signalling in microRNA-mediated regulation.

Cells may exploit oscillatory gene expression to encode biological information. Temporal features of oscillations, such as pulse frequency and amplitude, are determinant for the outcome of signalling pathways. However, little effort has been devoted to unveiling the role of pulsatility in the context of post-transcriptional gene regulation, where microRNAs act by binding to RNAs and regulate their expression. Here, we study the effects of periodic against constant microRNA synthesis within minimal microRNA-target networks. We find that there is a repressive advantage of pulsatile over constant microRNA synthesis, and that the extent of repression depends on the frequency of pulses, thus uncovering frequency preference behaviours. We show that the preference for specific input frequencies is determined by relative microRNA and target kinetic rates and can lead to exclusive frequency-dependent repression on distinct RNA species, thereby highlighting a potential mechanism of selective dynamical target regulation. Moreover, we show that frequencies observed in periodically expressed microRNAs, such as those involved in circadian rhythms and development, can be selectively favored. Our findings might have implications for experimental studies aimed at understanding how periodic patterns drive biological responses through microRNA-mediated signalling and provide suggestions for validation in synthetic networks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nucleic Acids Research
Nucleic Acids Research 生物-生化与分子生物学
CiteScore
27.10
自引率
4.70%
发文量
1057
审稿时长
2 months
期刊介绍: Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信