视神经头光学相干断层血管造影24-2视野图的深度学习估计。

IF 1.8 4区 医学 Q2 OPHTHALMOLOGY
Golnoush Mahmoudinezhad, Sasan Moghimi, Liyang Ru, Yu Xuan Yong, Dongchen Yang, Jiacheng Cheng, Siavash Beheshtaein, Evan Walker, Kareem Latif, Kelvin H Du, Gopikasree Gunasegaran, Takashi Nishida, Mark Christopher, Linda Zangwill, Nuno Vasconcelos, Robert N Weinreb
{"title":"视神经头光学相干断层血管造影24-2视野图的深度学习估计。","authors":"Golnoush Mahmoudinezhad, Sasan Moghimi, Liyang Ru, Yu Xuan Yong, Dongchen Yang, Jiacheng Cheng, Siavash Beheshtaein, Evan Walker, Kareem Latif, Kelvin H Du, Gopikasree Gunasegaran, Takashi Nishida, Mark Christopher, Linda Zangwill, Nuno Vasconcelos, Robert N Weinreb","doi":"10.1097/IJG.0000000000002626","DOIUrl":null,"url":null,"abstract":"<p><strong>Precis: </strong>Artificial intelligence applied to OCTA images demonstrated high accuracy in estimating 24-2 visual field maps by leveraging information from pararpapillary area.</p><p><strong>Purpose: </strong>To develop deep learning (DL) models estimating 24-2 visual field (VF) maps from optical coherence tomography angiography (OCTA) optic nerve head (ONH) en face images.</p><p><strong>Methods: </strong>A total of 3148 VF OCTA pairs were collected from 994 participants (1684 eyes). DL models were trained using radial peripapillary capillary (RPC), superficial, and choroidal, as well as combined ONH VD layers, to estimate 24-2 mean deviation (MD), pattern standard deviation (PSD), 52 total deviation (TD), and pattern deviation (PD) values and compared with a linear regression (LR) model. Model accuracy was assessed by calculating mean absolute error (MAE) and R (Pearson correlation coefficients) between estimated and actual VF values.</p><p><strong>Results: </strong>DL models outperformed LR estimates for the estimation of VF values using individual and combined layers (P<0.001). For example, in the estimation of MD using RPC, DL achieved an R of 0.79 and MAEs of 1.77 dB. Average estimated TDs using RPC had R of 0.63 and MAEs of 3.08 dB. DL estimation using combined layers slightly improved choroid in the estimation of MD (P<0.01) and had comparable performance with RPC and superficial layers. It also slightly improved RPC, superficial and choroidal layer in the estimation of TDs (P<0.01).</p><p><strong>Conclusions: </strong>DL models from OCTA images demonstrated high accuracy in estimating 24-2 VF maps by leveraging information from ONH layers. By extending the application of DL to OCTA images using RPC or superficial layers, it may be possible to reduce the frequency of VF testing to individual patients.</p>","PeriodicalId":15938,"journal":{"name":"Journal of Glaucoma","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning Estimation of 24-2 Visual Field Map from Optic Nerve Head Optical Coherence Tomography Angiography.\",\"authors\":\"Golnoush Mahmoudinezhad, Sasan Moghimi, Liyang Ru, Yu Xuan Yong, Dongchen Yang, Jiacheng Cheng, Siavash Beheshtaein, Evan Walker, Kareem Latif, Kelvin H Du, Gopikasree Gunasegaran, Takashi Nishida, Mark Christopher, Linda Zangwill, Nuno Vasconcelos, Robert N Weinreb\",\"doi\":\"10.1097/IJG.0000000000002626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Precis: </strong>Artificial intelligence applied to OCTA images demonstrated high accuracy in estimating 24-2 visual field maps by leveraging information from pararpapillary area.</p><p><strong>Purpose: </strong>To develop deep learning (DL) models estimating 24-2 visual field (VF) maps from optical coherence tomography angiography (OCTA) optic nerve head (ONH) en face images.</p><p><strong>Methods: </strong>A total of 3148 VF OCTA pairs were collected from 994 participants (1684 eyes). DL models were trained using radial peripapillary capillary (RPC), superficial, and choroidal, as well as combined ONH VD layers, to estimate 24-2 mean deviation (MD), pattern standard deviation (PSD), 52 total deviation (TD), and pattern deviation (PD) values and compared with a linear regression (LR) model. Model accuracy was assessed by calculating mean absolute error (MAE) and R (Pearson correlation coefficients) between estimated and actual VF values.</p><p><strong>Results: </strong>DL models outperformed LR estimates for the estimation of VF values using individual and combined layers (P<0.001). For example, in the estimation of MD using RPC, DL achieved an R of 0.79 and MAEs of 1.77 dB. Average estimated TDs using RPC had R of 0.63 and MAEs of 3.08 dB. DL estimation using combined layers slightly improved choroid in the estimation of MD (P<0.01) and had comparable performance with RPC and superficial layers. It also slightly improved RPC, superficial and choroidal layer in the estimation of TDs (P<0.01).</p><p><strong>Conclusions: </strong>DL models from OCTA images demonstrated high accuracy in estimating 24-2 VF maps by leveraging information from ONH layers. By extending the application of DL to OCTA images using RPC or superficial layers, it may be possible to reduce the frequency of VF testing to individual patients.</p>\",\"PeriodicalId\":15938,\"journal\":{\"name\":\"Journal of Glaucoma\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Glaucoma\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/IJG.0000000000002626\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Glaucoma","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/IJG.0000000000002626","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

Precis:人工智能应用于OCTA图像,通过利用乳头旁区域的信息,在估计24-2视野地图方面显示出很高的准确性。目的:建立深度学习(DL)模型,从光学相干断层扫描血管造影(OCTA)视神经头(ONH)面部图像中估计24-2视野(VF)地图。方法:共收集994名受试者(1684只眼)的3148对VF OCTA。DL模型使用径向乳头周围毛细血管(RPC)、浅表和脉络膜以及ONH VD层进行训练,以估计24-2平均偏差(MD)、模式标准差(PSD)、52总偏差(TD)和模式偏差(PD)值,并与线性回归(LR)模型进行比较。通过计算估计VF值与实际VF值之间的平均绝对误差(MAE)和R (Pearson相关系数)来评估模型的准确性。结果:DL模型在使用单个层和组合层估计VF值方面优于LR估计(结论:利用ONH层的信息,来自OCTA图像的DL模型在估计24-2 VF地图方面表现出很高的准确性。通过将DL应用扩展到使用RPC或浅层的OCTA图像,可能会减少个别患者的VF检测频率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning Estimation of 24-2 Visual Field Map from Optic Nerve Head Optical Coherence Tomography Angiography.

Precis: Artificial intelligence applied to OCTA images demonstrated high accuracy in estimating 24-2 visual field maps by leveraging information from pararpapillary area.

Purpose: To develop deep learning (DL) models estimating 24-2 visual field (VF) maps from optical coherence tomography angiography (OCTA) optic nerve head (ONH) en face images.

Methods: A total of 3148 VF OCTA pairs were collected from 994 participants (1684 eyes). DL models were trained using radial peripapillary capillary (RPC), superficial, and choroidal, as well as combined ONH VD layers, to estimate 24-2 mean deviation (MD), pattern standard deviation (PSD), 52 total deviation (TD), and pattern deviation (PD) values and compared with a linear regression (LR) model. Model accuracy was assessed by calculating mean absolute error (MAE) and R (Pearson correlation coefficients) between estimated and actual VF values.

Results: DL models outperformed LR estimates for the estimation of VF values using individual and combined layers (P<0.001). For example, in the estimation of MD using RPC, DL achieved an R of 0.79 and MAEs of 1.77 dB. Average estimated TDs using RPC had R of 0.63 and MAEs of 3.08 dB. DL estimation using combined layers slightly improved choroid in the estimation of MD (P<0.01) and had comparable performance with RPC and superficial layers. It also slightly improved RPC, superficial and choroidal layer in the estimation of TDs (P<0.01).

Conclusions: DL models from OCTA images demonstrated high accuracy in estimating 24-2 VF maps by leveraging information from ONH layers. By extending the application of DL to OCTA images using RPC or superficial layers, it may be possible to reduce the frequency of VF testing to individual patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Glaucoma
Journal of Glaucoma 医学-眼科学
CiteScore
4.20
自引率
10.00%
发文量
330
审稿时长
4-8 weeks
期刊介绍: The Journal of Glaucoma is a peer reviewed journal addressing the spectrum of issues affecting definition, diagnosis, and management of glaucoma and providing a forum for lively and stimulating discussion of clinical, scientific, and socioeconomic factors affecting care of glaucoma patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信