全基因组组装和比较基因组分析提供了深入了解里氏木霉的内生生活方式。

IF 1.6 4区 生物学 Q3 GENETICS & HEREDITY
Arjan Singh, Meenu Katoch
{"title":"全基因组组装和比较基因组分析提供了深入了解里氏木霉的内生生活方式。","authors":"Arjan Singh, Meenu Katoch","doi":"10.1007/s00294-025-01324-x","DOIUrl":null,"url":null,"abstract":"<p><p>Trichoderma species exhibit remarkable versatility in adaptability and in occupying habitats with lifestyles ranging from mycoparasitism and saprotrophy to endophytism. In this study, we present the first high-quality whole-genome assembly and annotation of T. lixii using Illumina HiSeq technology to explore the mechanisms of endophytic lifestyle and plant colonization. The genome size was 41.1 Mbp, comprising 15,430 predicted genes, of which 7,918 were functionally annotated. Comparative analysis identified 82 CAZyme families involved in cellulose and hemicellulose degradation, notably Glycoside Hydrolases (GHs) (43) [e.g., GH3 (14), GH5 (10), GH7 (4) ], Carbohydrate Esterases (CEs) (10), and Auxiliary Activities (AAs) (29) [e.g., AA3 (20), AA9 ]. GHs primarily degrade cellulose, while Polysaccharide Lyases (PLs), along with other CAZymes like CEs and Lytic Polysaccharide Monooxygenases (LPMOs), assist in modifying substrates or targeting specific bonds. These enzymes facilitate substrate breakdown, host tissue penetration, and nutrient acquisition, supporting a non-pathogenic, endophytic lifestyle. The presence of 53 secondary metabolite biosynthetic gene clusters indicates a strong biosynthetic potential. KEGG analysis assigned 2,469 genes to multiple metabolic and signaling pathways, highlighting an enriched profile for carbohydrate metabolism, signal transduction, and antibiotic biosynthesis. Comparative genomics also revealed both preserved and distinctive traits of T. lixii, confirming its ecological flexibility and promise as a source of new bioactive molecules. These findings reveal genetic diversity among the species, providing a foundation for future studies on biocontrol and endophytic functions. The growing availability of Trichoderma genomes deepens understanding of their unique features and offers new prospects for agricultural and biotechnological applications.</p>","PeriodicalId":10918,"journal":{"name":"Current Genetics","volume":"71 1","pages":"20"},"PeriodicalIF":1.6000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Whole-genome assembly and comparative genomic analyses provide insight into the endophytic lifestyle of Trichoderma lixii.\",\"authors\":\"Arjan Singh, Meenu Katoch\",\"doi\":\"10.1007/s00294-025-01324-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Trichoderma species exhibit remarkable versatility in adaptability and in occupying habitats with lifestyles ranging from mycoparasitism and saprotrophy to endophytism. In this study, we present the first high-quality whole-genome assembly and annotation of T. lixii using Illumina HiSeq technology to explore the mechanisms of endophytic lifestyle and plant colonization. The genome size was 41.1 Mbp, comprising 15,430 predicted genes, of which 7,918 were functionally annotated. Comparative analysis identified 82 CAZyme families involved in cellulose and hemicellulose degradation, notably Glycoside Hydrolases (GHs) (43) [e.g., GH3 (14), GH5 (10), GH7 (4) ], Carbohydrate Esterases (CEs) (10), and Auxiliary Activities (AAs) (29) [e.g., AA3 (20), AA9 ]. GHs primarily degrade cellulose, while Polysaccharide Lyases (PLs), along with other CAZymes like CEs and Lytic Polysaccharide Monooxygenases (LPMOs), assist in modifying substrates or targeting specific bonds. These enzymes facilitate substrate breakdown, host tissue penetration, and nutrient acquisition, supporting a non-pathogenic, endophytic lifestyle. The presence of 53 secondary metabolite biosynthetic gene clusters indicates a strong biosynthetic potential. KEGG analysis assigned 2,469 genes to multiple metabolic and signaling pathways, highlighting an enriched profile for carbohydrate metabolism, signal transduction, and antibiotic biosynthesis. Comparative genomics also revealed both preserved and distinctive traits of T. lixii, confirming its ecological flexibility and promise as a source of new bioactive molecules. These findings reveal genetic diversity among the species, providing a foundation for future studies on biocontrol and endophytic functions. The growing availability of Trichoderma genomes deepens understanding of their unique features and offers new prospects for agricultural and biotechnological applications.</p>\",\"PeriodicalId\":10918,\"journal\":{\"name\":\"Current Genetics\",\"volume\":\"71 1\",\"pages\":\"20\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00294-025-01324-x\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00294-025-01324-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

木霉在适应性和生境上表现出显著的多样性,其生活方式从真菌寄生和腐殖到内生都有。在这项研究中,我们首次利用Illumina HiSeq技术对T. lixii进行了高质量的全基因组组装和注释,以探索T. lixii的内生生活方式和植物定植机制。基因组大小为41.1 Mbp,包含15,430个预测基因,其中7,918个被功能注释。比较分析鉴定出82个参与纤维素和半纤维素降解的CAZyme家族,主要是糖苷水解酶(GHs)(43)[例如GH3(14)、GH5(10)、GH7(4)]、碳水化合物酯酶(CEs)(10)和辅助活性酶(AAs)(29)[例如AA3(20)、AA9]。GHs主要降解纤维素,而多糖裂解酶(PLs),以及其他酶,如ce和裂解多糖单氧酶(LPMOs),协助修饰底物或靶向特定键。这些酶促进底物分解、宿主组织渗透和营养获取,支持非致病性的内生生活方式。53个次生代谢物生物合成基因簇的存在表明其具有很强的生物合成潜力。KEGG分析将2469个基因分配到多个代谢和信号通路,突出了碳水化合物代谢、信号转导和抗生素生物合成的丰富谱。比较基因组学还揭示了lixii的保存和独特的性状,证实了其生态灵活性和作为新的生物活性分子来源的前景。这些发现揭示了植物间的遗传多样性,为进一步研究植物的生物防治和内生功能奠定了基础。越来越多的木霉基因组的可用性加深了对其独特特征的理解,并为农业和生物技术应用提供了新的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Whole-genome assembly and comparative genomic analyses provide insight into the endophytic lifestyle of Trichoderma lixii.

Trichoderma species exhibit remarkable versatility in adaptability and in occupying habitats with lifestyles ranging from mycoparasitism and saprotrophy to endophytism. In this study, we present the first high-quality whole-genome assembly and annotation of T. lixii using Illumina HiSeq technology to explore the mechanisms of endophytic lifestyle and plant colonization. The genome size was 41.1 Mbp, comprising 15,430 predicted genes, of which 7,918 were functionally annotated. Comparative analysis identified 82 CAZyme families involved in cellulose and hemicellulose degradation, notably Glycoside Hydrolases (GHs) (43) [e.g., GH3 (14), GH5 (10), GH7 (4) ], Carbohydrate Esterases (CEs) (10), and Auxiliary Activities (AAs) (29) [e.g., AA3 (20), AA9 ]. GHs primarily degrade cellulose, while Polysaccharide Lyases (PLs), along with other CAZymes like CEs and Lytic Polysaccharide Monooxygenases (LPMOs), assist in modifying substrates or targeting specific bonds. These enzymes facilitate substrate breakdown, host tissue penetration, and nutrient acquisition, supporting a non-pathogenic, endophytic lifestyle. The presence of 53 secondary metabolite biosynthetic gene clusters indicates a strong biosynthetic potential. KEGG analysis assigned 2,469 genes to multiple metabolic and signaling pathways, highlighting an enriched profile for carbohydrate metabolism, signal transduction, and antibiotic biosynthesis. Comparative genomics also revealed both preserved and distinctive traits of T. lixii, confirming its ecological flexibility and promise as a source of new bioactive molecules. These findings reveal genetic diversity among the species, providing a foundation for future studies on biocontrol and endophytic functions. The growing availability of Trichoderma genomes deepens understanding of their unique features and offers new prospects for agricultural and biotechnological applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Genetics
Current Genetics 生物-遗传学
CiteScore
6.00
自引率
0.00%
发文量
34
审稿时长
1 months
期刊介绍: Current Genetics publishes genetic, genomic, molecular and systems-level analysis of eukaryotic and prokaryotic microorganisms and cell organelles. All articles are peer-reviewed. The journal welcomes submissions employing any type of research approach, be it analytical (aiming at a better understanding), applied (aiming at practical applications), synthetic or theoretical. Current Genetics no longer accepts manuscripts describing the genome sequence of mitochondria/chloroplast of a small number of species. Manuscripts covering sequence comparisons and analyses that include a large number of species will still be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信