血小板因子4 (PF4)调控造血干细胞衰老

IF 23.1 1区 医学 Q1 HEMATOLOGY
Blood Pub Date : 2025-09-08 DOI:10.1182/blood.2024027432
Sen Zhang, Charles E Ayemoba, Anna M Di Staulo, Kenneth Joves, Chandani M Patel, Eva Hin Wa Leung, Maura Lima Pereira Bueno, Xiaoping Du, Mortimer Poncz, Sang-Ging Ong, Claus Nerlov, Maria Maryanovich, Constantinos Chronis, Sandra Pinho
{"title":"血小板因子4 (PF4)调控造血干细胞衰老","authors":"Sen Zhang, Charles E Ayemoba, Anna M Di Staulo, Kenneth Joves, Chandani M Patel, Eva Hin Wa Leung, Maura Lima Pereira Bueno, Xiaoping Du, Mortimer Poncz, Sang-Ging Ong, Claus Nerlov, Maria Maryanovich, Constantinos Chronis, Sandra Pinho","doi":"10.1182/blood.2024027432","DOIUrl":null,"url":null,"abstract":"<p><p>Hematopoietic stem cells (HSCs) responsible for blood cell production and their bone marrow regulatory niches undergo age-related changes, impacting immune responses and predisposing individuals to hematologic malignancies. Here, we show that the age-related alterations of the megakaryocytic niche and associated downregulation of Platelet Factor 4 (PF4) are pivotal mechanisms driving HSC aging. PF4-deficient mice display several phenotypes reminiscent of accelerated HSC aging, including lymphopenia, increased myeloid output, and DNA damage, mimicking physiologically aged HSCs. Remarkably, recombinant PF4 administration restored old HSCs to youthful functional phenotypes characterized by improved cell polarity, reduced DNA damage, enhanced in vivo reconstitution capacity, and balanced lineage output. Mechanistically, we identified LDLR and CXCR3 as the HSC receptors transmitting the PF4 signal, with double knockout mice showing exacerbated HSC aging phenotypes similar to PF4-deficient mice. Furthermore, human HSCs across various age groups also respond to the youthful PF4 signaling, highlighting its potential for rejuvenating aged hematopoietic systems. These findings pave the way for targeted therapies aimed at reversing age-related HSC decline with potential implications in the prevention or improvement of the course of age-related hematopoietic diseases.</p>","PeriodicalId":9102,"journal":{"name":"Blood","volume":" ","pages":""},"PeriodicalIF":23.1000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Platelet Factor 4 (PF4) Regulates Hematopoietic Stem Cell Aging.\",\"authors\":\"Sen Zhang, Charles E Ayemoba, Anna M Di Staulo, Kenneth Joves, Chandani M Patel, Eva Hin Wa Leung, Maura Lima Pereira Bueno, Xiaoping Du, Mortimer Poncz, Sang-Ging Ong, Claus Nerlov, Maria Maryanovich, Constantinos Chronis, Sandra Pinho\",\"doi\":\"10.1182/blood.2024027432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hematopoietic stem cells (HSCs) responsible for blood cell production and their bone marrow regulatory niches undergo age-related changes, impacting immune responses and predisposing individuals to hematologic malignancies. Here, we show that the age-related alterations of the megakaryocytic niche and associated downregulation of Platelet Factor 4 (PF4) are pivotal mechanisms driving HSC aging. PF4-deficient mice display several phenotypes reminiscent of accelerated HSC aging, including lymphopenia, increased myeloid output, and DNA damage, mimicking physiologically aged HSCs. Remarkably, recombinant PF4 administration restored old HSCs to youthful functional phenotypes characterized by improved cell polarity, reduced DNA damage, enhanced in vivo reconstitution capacity, and balanced lineage output. Mechanistically, we identified LDLR and CXCR3 as the HSC receptors transmitting the PF4 signal, with double knockout mice showing exacerbated HSC aging phenotypes similar to PF4-deficient mice. Furthermore, human HSCs across various age groups also respond to the youthful PF4 signaling, highlighting its potential for rejuvenating aged hematopoietic systems. These findings pave the way for targeted therapies aimed at reversing age-related HSC decline with potential implications in the prevention or improvement of the course of age-related hematopoietic diseases.</p>\",\"PeriodicalId\":9102,\"journal\":{\"name\":\"Blood\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":23.1000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Blood\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1182/blood.2024027432\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blood","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1182/blood.2024027432","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

造血干细胞(hsc)负责血细胞的产生及其骨髓调节龛经历与年龄相关的变化,影响免疫反应并使个体易患血液系统恶性肿瘤。在这里,我们发现巨核细胞生态位的年龄相关改变和血小板因子4 (PF4)的相关下调是驱动HSC衰老的关键机制。pf4缺陷小鼠表现出几种表型,使人联想到HSC加速老化,包括淋巴细胞减少、髓细胞输出增加和DNA损伤,模拟生理性老化的HSC。值得注意的是,重组PF4使衰老的hsc恢复到年轻的功能表型,其特征是细胞极性改善,DNA损伤减少,体内重构能力增强,谱系输出平衡。在机制上,我们发现LDLR和CXCR3是传递PF4信号的HSC受体,双敲除小鼠表现出与PF4缺陷小鼠相似的HSC老化表型加剧。此外,不同年龄组的人类造血干细胞也对年轻的PF4信号作出反应,这突出了其使衰老的造血系统恢复活力的潜力。这些发现为靶向治疗铺平了道路,旨在逆转与年龄相关的HSC下降,在预防或改善与年龄相关的造血疾病过程中具有潜在的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Platelet Factor 4 (PF4) Regulates Hematopoietic Stem Cell Aging.

Hematopoietic stem cells (HSCs) responsible for blood cell production and their bone marrow regulatory niches undergo age-related changes, impacting immune responses and predisposing individuals to hematologic malignancies. Here, we show that the age-related alterations of the megakaryocytic niche and associated downregulation of Platelet Factor 4 (PF4) are pivotal mechanisms driving HSC aging. PF4-deficient mice display several phenotypes reminiscent of accelerated HSC aging, including lymphopenia, increased myeloid output, and DNA damage, mimicking physiologically aged HSCs. Remarkably, recombinant PF4 administration restored old HSCs to youthful functional phenotypes characterized by improved cell polarity, reduced DNA damage, enhanced in vivo reconstitution capacity, and balanced lineage output. Mechanistically, we identified LDLR and CXCR3 as the HSC receptors transmitting the PF4 signal, with double knockout mice showing exacerbated HSC aging phenotypes similar to PF4-deficient mice. Furthermore, human HSCs across various age groups also respond to the youthful PF4 signaling, highlighting its potential for rejuvenating aged hematopoietic systems. These findings pave the way for targeted therapies aimed at reversing age-related HSC decline with potential implications in the prevention or improvement of the course of age-related hematopoietic diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Blood
Blood 医学-血液学
CiteScore
23.60
自引率
3.90%
发文量
955
审稿时长
1 months
期刊介绍: Blood, the official journal of the American Society of Hematology, published online and in print, provides an international forum for the publication of original articles describing basic laboratory, translational, and clinical investigations in hematology. Primary research articles will be published under the following scientific categories: Clinical Trials and Observations; Gene Therapy; Hematopoiesis and Stem Cells; Immunobiology and Immunotherapy scope; Myeloid Neoplasia; Lymphoid Neoplasia; Phagocytes, Granulocytes and Myelopoiesis; Platelets and Thrombopoiesis; Red Cells, Iron and Erythropoiesis; Thrombosis and Hemostasis; Transfusion Medicine; Transplantation; and Vascular Biology. Papers can be listed under more than one category as appropriate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信