{"title":"IL-1β通过NF-κB (RelA) Ser276/p62介导的软骨细胞中受损线粒体的消除抑制其自身的促凋亡活性。","authors":"Junzheng Hu, Weituo Zhang, Zhe Zhao","doi":"10.1093/bbb/zbaf119","DOIUrl":null,"url":null,"abstract":"<p><p>Interleukin-1β (IL-1β) is a central proinflammatory cytokine implicated in osteoarthritis (OA), but its precise role in chondrocyte apoptosis remains to be fully elucidated. In this study, we demonstrate that IL-1β triggers mitophagy in chondrocytes by promoting Parkin translocation and p62 recruitment to damaged mitochondria, thereby reducing mitochondrial dysfunction and apoptosis. Loss of p62 resulted in impaired mitophagy, excessive mitochondrial superoxide accumulation, and increased cell death. Mechanistically, IL-1β enhanced NF-κB (RelA) phosphorylation at Ser276 and Ser536, accompanied by elevated MSK1 expression. Inhibition of MSK1 selectively suppressed Ser276 phosphorylation without affecting Ser536, leading to reduced p62 expression and disrupted mitophagy. These findings reveal a previously unrecognized intrinsic regulatory mechanism by which IL-1β limits its own apoptosis-promoting effect through activation of the NF-κB (RelA) Ser276-p62-mitophagy axis. This pathway facilitates the clearance of damaged mitochondria and preserves chondrocyte viability, offering potential therapeutic insight into inflammation-associated cartilage degeneration in OA.</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IL-1β restrains its own apoptosis-promoting activity via NF-κB (RelA) Ser276/p62-mediated elimination of damaged mitochondria in Chondrocytes.\",\"authors\":\"Junzheng Hu, Weituo Zhang, Zhe Zhao\",\"doi\":\"10.1093/bbb/zbaf119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Interleukin-1β (IL-1β) is a central proinflammatory cytokine implicated in osteoarthritis (OA), but its precise role in chondrocyte apoptosis remains to be fully elucidated. In this study, we demonstrate that IL-1β triggers mitophagy in chondrocytes by promoting Parkin translocation and p62 recruitment to damaged mitochondria, thereby reducing mitochondrial dysfunction and apoptosis. Loss of p62 resulted in impaired mitophagy, excessive mitochondrial superoxide accumulation, and increased cell death. Mechanistically, IL-1β enhanced NF-κB (RelA) phosphorylation at Ser276 and Ser536, accompanied by elevated MSK1 expression. Inhibition of MSK1 selectively suppressed Ser276 phosphorylation without affecting Ser536, leading to reduced p62 expression and disrupted mitophagy. These findings reveal a previously unrecognized intrinsic regulatory mechanism by which IL-1β limits its own apoptosis-promoting effect through activation of the NF-κB (RelA) Ser276-p62-mitophagy axis. This pathway facilitates the clearance of damaged mitochondria and preserves chondrocyte viability, offering potential therapeutic insight into inflammation-associated cartilage degeneration in OA.</p>\",\"PeriodicalId\":9175,\"journal\":{\"name\":\"Bioscience, Biotechnology, and Biochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioscience, Biotechnology, and Biochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/bbb/zbaf119\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience, Biotechnology, and Biochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/bbb/zbaf119","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
IL-1β restrains its own apoptosis-promoting activity via NF-κB (RelA) Ser276/p62-mediated elimination of damaged mitochondria in Chondrocytes.
Interleukin-1β (IL-1β) is a central proinflammatory cytokine implicated in osteoarthritis (OA), but its precise role in chondrocyte apoptosis remains to be fully elucidated. In this study, we demonstrate that IL-1β triggers mitophagy in chondrocytes by promoting Parkin translocation and p62 recruitment to damaged mitochondria, thereby reducing mitochondrial dysfunction and apoptosis. Loss of p62 resulted in impaired mitophagy, excessive mitochondrial superoxide accumulation, and increased cell death. Mechanistically, IL-1β enhanced NF-κB (RelA) phosphorylation at Ser276 and Ser536, accompanied by elevated MSK1 expression. Inhibition of MSK1 selectively suppressed Ser276 phosphorylation without affecting Ser536, leading to reduced p62 expression and disrupted mitophagy. These findings reveal a previously unrecognized intrinsic regulatory mechanism by which IL-1β limits its own apoptosis-promoting effect through activation of the NF-κB (RelA) Ser276-p62-mitophagy axis. This pathway facilitates the clearance of damaged mitochondria and preserves chondrocyte viability, offering potential therapeutic insight into inflammation-associated cartilage degeneration in OA.
期刊介绍:
Bioscience, Biotechnology, and Biochemistry publishes high-quality papers providing chemical and biological analyses of vital phenomena exhibited by animals, plants, and microorganisms, the chemical structures and functions of their products, and related matters. The Journal plays a major role in communicating to a global audience outstanding basic and applied research in all fields subsumed by the Japan Society for Bioscience, Biotechnology, and Agrochemistry (JSBBA).