{"title":"随着干旱和极端温度的增加,高山灌木从获取到保守的植物策略转变。","authors":"Dinesh Thakur, Nikita Rathore, Veronika Jandova, Zuzana Münzbergová, Jiri Dolezal","doi":"10.1093/aob/mcaf211","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aims: </strong>Trait-based approaches have advanced our understanding of plant strategies, yet they often focus on leaf-level traits, overlooking the functional roles of stem anatomy and twig characteristics. We investigated intraspecific trait variation in Salix flabellaris, an alpine dwarf shrub, along climatic gradients in the Himalayas. Our goal was to identify distinct axes of trait variation related to stem, twig, and leaf traits, assess their environmental drivers, and evaluate population-specific growth responses to recent climate change.</p><p><strong>Methods: </strong>We measured anatomical and morphological traits in stem, twig, and leaves across central and marginal populations along three Himalayan transects. Environmental gradients included variation in growing season temperature and soil moisture. Basal area increment from 2000 to 2021 was analyzed to assess long-term growth trends in different areas.</p><p><strong>Results: </strong>Trait dimensions were largely independent, reflecting distinct ecological strategies: (1) stem anatomical trade-off between hydraulic safety and conductivity; (2) twig dimension balancing construction costs and mechanical strength; and (3) leaf dimension along the exploitative-conservative axis. Higher temperatures enhanced performance manifested as larger twigs and reduced tissue construction costs but only under sufficient soil moisture conditions. Central populations at mid-elevations displayed the favorable trait combinations and highest growth rates. In contrast, marginal populations (higher and lower elevations) showed traits indicating structural reinforcement and conservative resource use. Climate warming over recent decades enhanced stem growth primarily in high-elevation populations, where low-temperature constraints were relaxed.</p><p><strong>Conclusions: </strong>This study demonstrates that stem, twig, and leaf traits represent distinct yet complementary strategies, with environmental filtering shaping their expression along climate gradients. Central populations exhibit highest growth under current conditions, while climate change is shifting growth advantages toward higher elevations. These findings highlight the need for integrated, multi-organ trait assessments to predict species performance, persistence, and potential range shifts under future climatic scenarios.</p>","PeriodicalId":8023,"journal":{"name":"Annals of botany","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shift from acquisitive to conservative plant strategies with increasing drought and temperature extremes in an alpine shrub.\",\"authors\":\"Dinesh Thakur, Nikita Rathore, Veronika Jandova, Zuzana Münzbergová, Jiri Dolezal\",\"doi\":\"10.1093/aob/mcaf211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and aims: </strong>Trait-based approaches have advanced our understanding of plant strategies, yet they often focus on leaf-level traits, overlooking the functional roles of stem anatomy and twig characteristics. We investigated intraspecific trait variation in Salix flabellaris, an alpine dwarf shrub, along climatic gradients in the Himalayas. Our goal was to identify distinct axes of trait variation related to stem, twig, and leaf traits, assess their environmental drivers, and evaluate population-specific growth responses to recent climate change.</p><p><strong>Methods: </strong>We measured anatomical and morphological traits in stem, twig, and leaves across central and marginal populations along three Himalayan transects. Environmental gradients included variation in growing season temperature and soil moisture. Basal area increment from 2000 to 2021 was analyzed to assess long-term growth trends in different areas.</p><p><strong>Results: </strong>Trait dimensions were largely independent, reflecting distinct ecological strategies: (1) stem anatomical trade-off between hydraulic safety and conductivity; (2) twig dimension balancing construction costs and mechanical strength; and (3) leaf dimension along the exploitative-conservative axis. Higher temperatures enhanced performance manifested as larger twigs and reduced tissue construction costs but only under sufficient soil moisture conditions. Central populations at mid-elevations displayed the favorable trait combinations and highest growth rates. In contrast, marginal populations (higher and lower elevations) showed traits indicating structural reinforcement and conservative resource use. Climate warming over recent decades enhanced stem growth primarily in high-elevation populations, where low-temperature constraints were relaxed.</p><p><strong>Conclusions: </strong>This study demonstrates that stem, twig, and leaf traits represent distinct yet complementary strategies, with environmental filtering shaping their expression along climate gradients. Central populations exhibit highest growth under current conditions, while climate change is shifting growth advantages toward higher elevations. These findings highlight the need for integrated, multi-organ trait assessments to predict species performance, persistence, and potential range shifts under future climatic scenarios.</p>\",\"PeriodicalId\":8023,\"journal\":{\"name\":\"Annals of botany\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/aob/mcaf211\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/aob/mcaf211","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Shift from acquisitive to conservative plant strategies with increasing drought and temperature extremes in an alpine shrub.
Background and aims: Trait-based approaches have advanced our understanding of plant strategies, yet they often focus on leaf-level traits, overlooking the functional roles of stem anatomy and twig characteristics. We investigated intraspecific trait variation in Salix flabellaris, an alpine dwarf shrub, along climatic gradients in the Himalayas. Our goal was to identify distinct axes of trait variation related to stem, twig, and leaf traits, assess their environmental drivers, and evaluate population-specific growth responses to recent climate change.
Methods: We measured anatomical and morphological traits in stem, twig, and leaves across central and marginal populations along three Himalayan transects. Environmental gradients included variation in growing season temperature and soil moisture. Basal area increment from 2000 to 2021 was analyzed to assess long-term growth trends in different areas.
Results: Trait dimensions were largely independent, reflecting distinct ecological strategies: (1) stem anatomical trade-off between hydraulic safety and conductivity; (2) twig dimension balancing construction costs and mechanical strength; and (3) leaf dimension along the exploitative-conservative axis. Higher temperatures enhanced performance manifested as larger twigs and reduced tissue construction costs but only under sufficient soil moisture conditions. Central populations at mid-elevations displayed the favorable trait combinations and highest growth rates. In contrast, marginal populations (higher and lower elevations) showed traits indicating structural reinforcement and conservative resource use. Climate warming over recent decades enhanced stem growth primarily in high-elevation populations, where low-temperature constraints were relaxed.
Conclusions: This study demonstrates that stem, twig, and leaf traits represent distinct yet complementary strategies, with environmental filtering shaping their expression along climate gradients. Central populations exhibit highest growth under current conditions, while climate change is shifting growth advantages toward higher elevations. These findings highlight the need for integrated, multi-organ trait assessments to predict species performance, persistence, and potential range shifts under future climatic scenarios.
期刊介绍:
Annals of Botany is an international plant science journal publishing novel and rigorous research in all areas of plant science. It is published monthly in both electronic and printed forms with at least two extra issues each year that focus on a particular theme in plant biology. The Journal is managed by the Annals of Botany Company, a not-for-profit educational charity established to promote plant science worldwide.
The Journal publishes original research papers, invited and submitted review articles, ''Research in Context'' expanding on original work, ''Botanical Briefings'' as short overviews of important topics, and ''Viewpoints'' giving opinions. All papers in each issue are summarized briefly in Content Snapshots , there are topical news items in the Plant Cuttings section and Book Reviews . A rigorous review process ensures that readers are exposed to genuine and novel advances across a wide spectrum of botanical knowledge. All papers aim to advance knowledge and make a difference to our understanding of plant science.