评估生成人工智能模型的潜力,以协助专家开发药代动力学模型。

IF 4.1 Q2 PHARMACOLOGY & PHARMACY
Advanced pharmaceutical bulletin Pub Date : 2025-06-03 eCollection Date: 2025-07-01 DOI:10.34172/apb.025.43852
Sergio Sánchez-Herrero, Laura Calvet Liñan
{"title":"评估生成人工智能模型的潜力,以协助专家开发药代动力学模型。","authors":"Sergio Sánchez-Herrero, Laura Calvet Liñan","doi":"10.34172/apb.025.43852","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study explores the potential of generative AI models to aid experts in developing scripts for pharmacokinetic (PK) models, with a focus on constructing a two-compartment population PK model using data from Hosseini et al.</p><p><strong>Methods: </strong>Generative AI tools ChatGPT v3.5, Gemini v2.0 Flash and Microsoft Copilot free could help PK professionals- even those without programming experience-learn the programming languages and skills needed for PK modeling. To evaluate these free AI tools, PK models were created in R Studio, covering key tasks in pharmacometrics and clinical pharmacology, including model descriptions, input requirements, results, and code generation, with a focus on reproducibility.</p><p><strong>Results: </strong>ChatGPT demonstrated superior performance compared to Copilot and Gemini, highlighting strong foundational knowledge, advanced concepts, and practical skills, including PK code structure and syntax. Validation indicated high accuracy in estimated and simulated plots, with minimal differences in clearance (Cl) and volume of distribution (V c and V p) compared to reference values. The metrics showed absolute fractional error (AFE), absolute average fractional error (AAFE), and mean percentage error (MPE) values of 0.99, 1.14, and -1.85, respectively.</p><p><strong>Conclusion: </strong>These results show that generative AI can effectively extract PK data from literature, build population PK models in R, and create interactive Shiny apps for visualization, with expert support.</p>","PeriodicalId":7256,"journal":{"name":"Advanced pharmaceutical bulletin","volume":"15 2","pages":"467-473"},"PeriodicalIF":4.1000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12413966/pdf/","citationCount":"0","resultStr":"{\"title\":\"Assessing the Potential of Generative Artificial Intelligence Models to Assist Experts in the Development of Pharmacokinetic Models.\",\"authors\":\"Sergio Sánchez-Herrero, Laura Calvet Liñan\",\"doi\":\"10.34172/apb.025.43852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>This study explores the potential of generative AI models to aid experts in developing scripts for pharmacokinetic (PK) models, with a focus on constructing a two-compartment population PK model using data from Hosseini et al.</p><p><strong>Methods: </strong>Generative AI tools ChatGPT v3.5, Gemini v2.0 Flash and Microsoft Copilot free could help PK professionals- even those without programming experience-learn the programming languages and skills needed for PK modeling. To evaluate these free AI tools, PK models were created in R Studio, covering key tasks in pharmacometrics and clinical pharmacology, including model descriptions, input requirements, results, and code generation, with a focus on reproducibility.</p><p><strong>Results: </strong>ChatGPT demonstrated superior performance compared to Copilot and Gemini, highlighting strong foundational knowledge, advanced concepts, and practical skills, including PK code structure and syntax. Validation indicated high accuracy in estimated and simulated plots, with minimal differences in clearance (Cl) and volume of distribution (V c and V p) compared to reference values. The metrics showed absolute fractional error (AFE), absolute average fractional error (AAFE), and mean percentage error (MPE) values of 0.99, 1.14, and -1.85, respectively.</p><p><strong>Conclusion: </strong>These results show that generative AI can effectively extract PK data from literature, build population PK models in R, and create interactive Shiny apps for visualization, with expert support.</p>\",\"PeriodicalId\":7256,\"journal\":{\"name\":\"Advanced pharmaceutical bulletin\",\"volume\":\"15 2\",\"pages\":\"467-473\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12413966/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced pharmaceutical bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34172/apb.025.43852\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced pharmaceutical bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34172/apb.025.43852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究探讨了生成式人工智能模型的潜力,以帮助专家开发药代动力学(PK)模型的脚本,重点是利用Hosseini等人的数据构建一个双室群体PK模型。方法:生成式人工智能工具ChatGPT v3.5, Gemini v2.0 Flash和Microsoft Copilot free可以帮助PK专业人员-即使是没有编程经验的人-学习PK建模所需的编程语言和技能。为了评估这些免费的人工智能工具,我们在R Studio中创建了PK模型,涵盖了药物计量学和临床药理学的关键任务,包括模型描述、输入要求、结果和代码生成,重点是可重复性。结果:ChatGPT的性能优于Copilot和Gemini,突出了较强的基础知识、先进的概念和实践技能,包括PK代码结构和语法。验证表明,估计值和模拟图具有较高的准确性,与参考值相比,间隙(Cl)和分布体积(vc和vp)的差异极小。指标显示绝对分数误差(AFE)、绝对平均分数误差(AAFE)和平均百分比误差(MPE)值分别为0.99、1.14和-1.85。结论:这些结果表明,在专家的支持下,生成式AI可以有效地从文献中提取PK数据,在R中构建种群PK模型,并创建交互式的Shiny应用程序进行可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessing the Potential of Generative Artificial Intelligence Models to Assist Experts in the Development of Pharmacokinetic Models.

Purpose: This study explores the potential of generative AI models to aid experts in developing scripts for pharmacokinetic (PK) models, with a focus on constructing a two-compartment population PK model using data from Hosseini et al.

Methods: Generative AI tools ChatGPT v3.5, Gemini v2.0 Flash and Microsoft Copilot free could help PK professionals- even those without programming experience-learn the programming languages and skills needed for PK modeling. To evaluate these free AI tools, PK models were created in R Studio, covering key tasks in pharmacometrics and clinical pharmacology, including model descriptions, input requirements, results, and code generation, with a focus on reproducibility.

Results: ChatGPT demonstrated superior performance compared to Copilot and Gemini, highlighting strong foundational knowledge, advanced concepts, and practical skills, including PK code structure and syntax. Validation indicated high accuracy in estimated and simulated plots, with minimal differences in clearance (Cl) and volume of distribution (V c and V p) compared to reference values. The metrics showed absolute fractional error (AFE), absolute average fractional error (AAFE), and mean percentage error (MPE) values of 0.99, 1.14, and -1.85, respectively.

Conclusion: These results show that generative AI can effectively extract PK data from literature, build population PK models in R, and create interactive Shiny apps for visualization, with expert support.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced pharmaceutical bulletin
Advanced pharmaceutical bulletin PHARMACOLOGY & PHARMACY-
CiteScore
6.80
自引率
2.80%
发文量
51
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信