{"title":"探索涉及共价键切割的碱化物种的碎片,用于代谢物表征。","authors":"Annelaure Damont, Ekaterina Darii, Chenqin Cao, Anaïs Legrand, Alain Perret, Sylvain Dechaumet, Amina S Woods, Christophe Junot, Jean-Claude Tabet, François Fenaille","doi":"10.1002/rcm.10133","DOIUrl":null,"url":null,"abstract":"<p><strong>Rationale: </strong>Electrospray (ESI), the most popular desorption/ionization technique used in mass spectrometry-based metabolomics, generates both protonated and deprotonated molecules, as well as adduct ions, sodium being the most frequent monoatomic cation entering their composition. With the spread and generalization of untargeted data-dependent and independent tandem mass spectrometry experiments, considering product ion spectra of sodium-containing entities appears relevant to complement fragmentation information of their protonated and deprotonated counterparts.</p><p><strong>Methods: </strong>Solutions of pure standards, mainly amino and organic acids, were prepared at 1 μg/mL and injected either by direct infusion or by flow-injection prior to ESI-MS/MS analysis. Product ion spectra of (de)protonated and sodiated molecules were recorded both in positive and negative modes on Orbitrap instruments under both non-resonant and resonant excitation conditions. Various normalized collision energies (NCE) were applied and the resulting collisional spectra were analyzed.</p><p><strong>Results: </strong>Examination of the resulting collisional spectra clearly revealed that fragmentation of sodiated ion species may produce spectra significantly different from [M + H]<sup>+</sup> or [M - H]<sup>-</sup>. They can be highly informative and result from specific fragmentation mechanisms based on covalent bond cleavages (CBCs) compared to protonated or deprotonated molecules. These specific CBCs involving sodium retention either in product ions or in neutral losses have been investigated and seem to occur when the sodium cation is involved in an ion-ion type interaction within the structure.</p><p><strong>Conclusions: </strong>Overall, we show, using representative examples of biologically relevant metabolites, the benefits of considering MS/MS data generated from sodiated entities, in addition to [M + H]<sup>+</sup> and [M - H]<sup>-</sup> collisional data, to improve metabolite identification. The differentiation of four positional isomers is a striking illustration of the power of fragmentation information obtained with species of the [M - 2H + Na]<sup>-</sup> form. Considering the number of metabolites featuring chemical groups capable of interacting with Na<sup>+</sup>, systematic integration of these data into annotation workflows should be considered.</p>","PeriodicalId":225,"journal":{"name":"Rapid Communications in Mass Spectrometry","volume":" ","pages":"e10133"},"PeriodicalIF":1.7000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the Fragmentation of Sodiated Species Involving Covalent-Bond Cleavages for Metabolite Characterization.\",\"authors\":\"Annelaure Damont, Ekaterina Darii, Chenqin Cao, Anaïs Legrand, Alain Perret, Sylvain Dechaumet, Amina S Woods, Christophe Junot, Jean-Claude Tabet, François Fenaille\",\"doi\":\"10.1002/rcm.10133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Rationale: </strong>Electrospray (ESI), the most popular desorption/ionization technique used in mass spectrometry-based metabolomics, generates both protonated and deprotonated molecules, as well as adduct ions, sodium being the most frequent monoatomic cation entering their composition. With the spread and generalization of untargeted data-dependent and independent tandem mass spectrometry experiments, considering product ion spectra of sodium-containing entities appears relevant to complement fragmentation information of their protonated and deprotonated counterparts.</p><p><strong>Methods: </strong>Solutions of pure standards, mainly amino and organic acids, were prepared at 1 μg/mL and injected either by direct infusion or by flow-injection prior to ESI-MS/MS analysis. Product ion spectra of (de)protonated and sodiated molecules were recorded both in positive and negative modes on Orbitrap instruments under both non-resonant and resonant excitation conditions. Various normalized collision energies (NCE) were applied and the resulting collisional spectra were analyzed.</p><p><strong>Results: </strong>Examination of the resulting collisional spectra clearly revealed that fragmentation of sodiated ion species may produce spectra significantly different from [M + H]<sup>+</sup> or [M - H]<sup>-</sup>. They can be highly informative and result from specific fragmentation mechanisms based on covalent bond cleavages (CBCs) compared to protonated or deprotonated molecules. These specific CBCs involving sodium retention either in product ions or in neutral losses have been investigated and seem to occur when the sodium cation is involved in an ion-ion type interaction within the structure.</p><p><strong>Conclusions: </strong>Overall, we show, using representative examples of biologically relevant metabolites, the benefits of considering MS/MS data generated from sodiated entities, in addition to [M + H]<sup>+</sup> and [M - H]<sup>-</sup> collisional data, to improve metabolite identification. The differentiation of four positional isomers is a striking illustration of the power of fragmentation information obtained with species of the [M - 2H + Na]<sup>-</sup> form. Considering the number of metabolites featuring chemical groups capable of interacting with Na<sup>+</sup>, systematic integration of these data into annotation workflows should be considered.</p>\",\"PeriodicalId\":225,\"journal\":{\"name\":\"Rapid Communications in Mass Spectrometry\",\"volume\":\" \",\"pages\":\"e10133\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rapid Communications in Mass Spectrometry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/rcm.10133\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rapid Communications in Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/rcm.10133","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Exploring the Fragmentation of Sodiated Species Involving Covalent-Bond Cleavages for Metabolite Characterization.
Rationale: Electrospray (ESI), the most popular desorption/ionization technique used in mass spectrometry-based metabolomics, generates both protonated and deprotonated molecules, as well as adduct ions, sodium being the most frequent monoatomic cation entering their composition. With the spread and generalization of untargeted data-dependent and independent tandem mass spectrometry experiments, considering product ion spectra of sodium-containing entities appears relevant to complement fragmentation information of their protonated and deprotonated counterparts.
Methods: Solutions of pure standards, mainly amino and organic acids, were prepared at 1 μg/mL and injected either by direct infusion or by flow-injection prior to ESI-MS/MS analysis. Product ion spectra of (de)protonated and sodiated molecules were recorded both in positive and negative modes on Orbitrap instruments under both non-resonant and resonant excitation conditions. Various normalized collision energies (NCE) were applied and the resulting collisional spectra were analyzed.
Results: Examination of the resulting collisional spectra clearly revealed that fragmentation of sodiated ion species may produce spectra significantly different from [M + H]+ or [M - H]-. They can be highly informative and result from specific fragmentation mechanisms based on covalent bond cleavages (CBCs) compared to protonated or deprotonated molecules. These specific CBCs involving sodium retention either in product ions or in neutral losses have been investigated and seem to occur when the sodium cation is involved in an ion-ion type interaction within the structure.
Conclusions: Overall, we show, using representative examples of biologically relevant metabolites, the benefits of considering MS/MS data generated from sodiated entities, in addition to [M + H]+ and [M - H]- collisional data, to improve metabolite identification. The differentiation of four positional isomers is a striking illustration of the power of fragmentation information obtained with species of the [M - 2H + Na]- form. Considering the number of metabolites featuring chemical groups capable of interacting with Na+, systematic integration of these data into annotation workflows should be considered.
期刊介绍:
Rapid Communications in Mass Spectrometry is a journal whose aim is the rapid publication of original research results and ideas on all aspects of the science of gas-phase ions; it covers all the associated scientific disciplines. There is no formal limit on paper length ("rapid" is not synonymous with "brief"), but papers should be of a length that is commensurate with the importance and complexity of the results being reported. Contributions may be theoretical or practical in nature; they may deal with methods, techniques and applications, or with the interpretation of results; they may cover any area in science that depends directly on measurements made upon gaseous ions or that is associated with such measurements.