植物谱系中类鱼藤的多样性、分布和进化。

IF 10.6 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Vaderament-A Nchiozem-Ngnitedem, Alan Paton, Gabin Thierry M Bitchagno
{"title":"植物谱系中类鱼藤的多样性、分布和进化。","authors":"Vaderament-A Nchiozem-Ngnitedem, Alan Paton, Gabin Thierry M Bitchagno","doi":"10.1039/d5np00054h","DOIUrl":null,"url":null,"abstract":"<p><p>Covering upto 2025Rotenoids are angular hybrid isoflavonoids mainly characterized by an additional six-membered ring between the B and C rings of flavonoids. The extra ring introduces further chemical diversity to the densely substituted precursors, isoflavonoids, making rotenoids a significant group of compounds within the plant kingdom. Early biosynthesis studies by L. Crombie, <i>Nat. Prod. Rep.</i>, 1984, <b>1</b>, 3-19, and subsequent revisions housed rotenoids into three groups, based on the oxygenation pattern of the bridge carbons between rings B and C. Since then, many more new structures of rotenoids have been discovered, prompting a need to revisit this classification as key structural traits of rotenoids might contribute to phylogenetic relationships and lineage diversification of plants. The new classification builds upon previous considerations, but also incorporates the defining feature of rotenoids, the additional carbon at the C-6 position, leading to nine distinct classes (Types I-IX). Types I and VII were found with the most representatives, predominantly distributed across the Pentapetalae clade, but also found in a few monocots. Rotenoids were found in phylogenetically distant lineages within the clade, raising intriguing questions about the evolutionary pathways that led to their biosynthesis and how their occurrences could inform plant taxonomy. The review addresses these questions and provides a thorough understanding of rotenoids and their chemotaxonomy significance.</p>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":" ","pages":""},"PeriodicalIF":10.6000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rotenoid diversity, distribution and evolution in plant lineages.\",\"authors\":\"Vaderament-A Nchiozem-Ngnitedem, Alan Paton, Gabin Thierry M Bitchagno\",\"doi\":\"10.1039/d5np00054h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Covering upto 2025Rotenoids are angular hybrid isoflavonoids mainly characterized by an additional six-membered ring between the B and C rings of flavonoids. The extra ring introduces further chemical diversity to the densely substituted precursors, isoflavonoids, making rotenoids a significant group of compounds within the plant kingdom. Early biosynthesis studies by L. Crombie, <i>Nat. Prod. Rep.</i>, 1984, <b>1</b>, 3-19, and subsequent revisions housed rotenoids into three groups, based on the oxygenation pattern of the bridge carbons between rings B and C. Since then, many more new structures of rotenoids have been discovered, prompting a need to revisit this classification as key structural traits of rotenoids might contribute to phylogenetic relationships and lineage diversification of plants. The new classification builds upon previous considerations, but also incorporates the defining feature of rotenoids, the additional carbon at the C-6 position, leading to nine distinct classes (Types I-IX). Types I and VII were found with the most representatives, predominantly distributed across the Pentapetalae clade, but also found in a few monocots. Rotenoids were found in phylogenetically distant lineages within the clade, raising intriguing questions about the evolutionary pathways that led to their biosynthesis and how their occurrences could inform plant taxonomy. The review addresses these questions and provides a thorough understanding of rotenoids and their chemotaxonomy significance.</p>\",\"PeriodicalId\":94,\"journal\":{\"name\":\"Natural Product Reports\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Product Reports\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d5np00054h\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Product Reports","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5np00054h","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

类鱼藤是一种角杂交异黄酮,其主要特征是在类黄酮的B环和C环之间多了一个六元环。这个额外的环为密集取代的前体异黄酮类化合物引入了进一步的化学多样性,使类鱼素成为植物界中一组重要的化合物。L. Crombie, Nat. Prod Rep., 1984, 1,3 -19的早期生物合成研究,以及随后的修订,基于B环和c环之间桥碳的氧合模式,将类鱼素分为三组。自那时以来,发现了更多的类鱼素新结构,促使需要重新审视这种分类,因为类鱼素的关键结构特征可能有助于植物的系统发育关系和谱系多样化。新的分类建立在先前考虑的基础上,但也纳入了类鱼藤的定义特征,即C-6位置的额外碳,导致九个不同的类别(类型I-IX)。I型和VII型最具代表性,主要分布在五瓣花序分支中,但也有少数单子叶花序。类鱼藤是在该分支中系统发育较远的谱系中发现的,这引发了一些有趣的问题:导致它们生物合成的进化途径,以及它们的出现如何为植物分类学提供信息。这篇综述解决了这些问题,并提供了对类鱼藤及其化学分类意义的全面了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rotenoid diversity, distribution and evolution in plant lineages.

Covering upto 2025Rotenoids are angular hybrid isoflavonoids mainly characterized by an additional six-membered ring between the B and C rings of flavonoids. The extra ring introduces further chemical diversity to the densely substituted precursors, isoflavonoids, making rotenoids a significant group of compounds within the plant kingdom. Early biosynthesis studies by L. Crombie, Nat. Prod. Rep., 1984, 1, 3-19, and subsequent revisions housed rotenoids into three groups, based on the oxygenation pattern of the bridge carbons between rings B and C. Since then, many more new structures of rotenoids have been discovered, prompting a need to revisit this classification as key structural traits of rotenoids might contribute to phylogenetic relationships and lineage diversification of plants. The new classification builds upon previous considerations, but also incorporates the defining feature of rotenoids, the additional carbon at the C-6 position, leading to nine distinct classes (Types I-IX). Types I and VII were found with the most representatives, predominantly distributed across the Pentapetalae clade, but also found in a few monocots. Rotenoids were found in phylogenetically distant lineages within the clade, raising intriguing questions about the evolutionary pathways that led to their biosynthesis and how their occurrences could inform plant taxonomy. The review addresses these questions and provides a thorough understanding of rotenoids and their chemotaxonomy significance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Natural Product Reports
Natural Product Reports 化学-生化与分子生物学
CiteScore
21.20
自引率
3.40%
发文量
127
审稿时长
1.7 months
期刊介绍: Natural Product Reports (NPR) serves as a pivotal critical review journal propelling advancements in all facets of natural products research, encompassing isolation, structural and stereochemical determination, biosynthesis, biological activity, and synthesis. With a broad scope, NPR extends its influence into the wider bioinorganic, bioorganic, and chemical biology communities. Covering areas such as enzymology, nucleic acids, genetics, chemical ecology, carbohydrates, primary and secondary metabolism, and analytical techniques, the journal provides insightful articles focusing on key developments shaping the field, rather than offering exhaustive overviews of all results. NPR encourages authors to infuse their perspectives on developments, trends, and future directions, fostering a dynamic exchange of ideas within the natural products research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信