{"title":"仿生纳米药物用于微波引发的铜增生,以增强癌症免疫治疗。","authors":"Meng Suo, Ziqi Wang, Shiwei Zhang, Wei Tang, Dongyan Liang, Xiaoyuan Chen, Shipeng Ning","doi":"10.1039/d5nh00425j","DOIUrl":null,"url":null,"abstract":"<p><p>Cuproptosis relies on intracellular copper accumulation and shows great potential in tumor therapy. However, the high content of glutathione (GSH) in tumor cells limits its effectiveness. Furthermore, the mechanism of immune activation mediated by cuproptosis remains unclear. To address this, we developed a cancer cell membrane-coated Cu<sub>2</sub>O nanoparticle (TC) to induce cuproptosis in tumor cells. After entering tumor cells <i>via</i> homologous targeting, the TC released Cu<sup>2+</sup> in the acidic microenvironment. Cu<sup>2+</sup> are subsequently reduced to Cu<sup>+</sup> generating hydroxyl radicals through the Fenton reaction. These results led to the downregulation of GSH and eventually sensitized cuproptosis. Microwave (MW)-induced hyperthermia further amplifies these effects. Experimental results demonstrate that TC + MW effectively induces 4T1 cancer cells' cuproptosis both <i>in vitro</i> and <i>in vivo</i>, significantly inhibiting 4T1 tumor growth with minimal systemic toxicity. The treatment also triggered tumor immunogenic cell death and sensitized T-cell-mediated anti-tumor immunity. TC offers a promising strategy for effective cancer cuproptosis and immunotherapy.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bionic nanomedicines for microwave-triggered cuproptosis to enhance cancer immunotherapy.\",\"authors\":\"Meng Suo, Ziqi Wang, Shiwei Zhang, Wei Tang, Dongyan Liang, Xiaoyuan Chen, Shipeng Ning\",\"doi\":\"10.1039/d5nh00425j\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cuproptosis relies on intracellular copper accumulation and shows great potential in tumor therapy. However, the high content of glutathione (GSH) in tumor cells limits its effectiveness. Furthermore, the mechanism of immune activation mediated by cuproptosis remains unclear. To address this, we developed a cancer cell membrane-coated Cu<sub>2</sub>O nanoparticle (TC) to induce cuproptosis in tumor cells. After entering tumor cells <i>via</i> homologous targeting, the TC released Cu<sup>2+</sup> in the acidic microenvironment. Cu<sup>2+</sup> are subsequently reduced to Cu<sup>+</sup> generating hydroxyl radicals through the Fenton reaction. These results led to the downregulation of GSH and eventually sensitized cuproptosis. Microwave (MW)-induced hyperthermia further amplifies these effects. Experimental results demonstrate that TC + MW effectively induces 4T1 cancer cells' cuproptosis both <i>in vitro</i> and <i>in vivo</i>, significantly inhibiting 4T1 tumor growth with minimal systemic toxicity. The treatment also triggered tumor immunogenic cell death and sensitized T-cell-mediated anti-tumor immunity. TC offers a promising strategy for effective cancer cuproptosis and immunotherapy.</p>\",\"PeriodicalId\":93,\"journal\":{\"name\":\"Nanoscale Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5nh00425j\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5nh00425j","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Bionic nanomedicines for microwave-triggered cuproptosis to enhance cancer immunotherapy.
Cuproptosis relies on intracellular copper accumulation and shows great potential in tumor therapy. However, the high content of glutathione (GSH) in tumor cells limits its effectiveness. Furthermore, the mechanism of immune activation mediated by cuproptosis remains unclear. To address this, we developed a cancer cell membrane-coated Cu2O nanoparticle (TC) to induce cuproptosis in tumor cells. After entering tumor cells via homologous targeting, the TC released Cu2+ in the acidic microenvironment. Cu2+ are subsequently reduced to Cu+ generating hydroxyl radicals through the Fenton reaction. These results led to the downregulation of GSH and eventually sensitized cuproptosis. Microwave (MW)-induced hyperthermia further amplifies these effects. Experimental results demonstrate that TC + MW effectively induces 4T1 cancer cells' cuproptosis both in vitro and in vivo, significantly inhibiting 4T1 tumor growth with minimal systemic toxicity. The treatment also triggered tumor immunogenic cell death and sensitized T-cell-mediated anti-tumor immunity. TC offers a promising strategy for effective cancer cuproptosis and immunotherapy.
期刊介绍:
Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.