{"title":"链霉菌作为异源生产微生物天然产物的多功能宿主平台。","authors":"Constanze Lasch, Maksym Myronovskyi, Andriy Luzhetskyy","doi":"10.1039/d5np00036j","DOIUrl":null,"url":null,"abstract":"<p><p>Focus on 2004 to 2024The rediscovery of natural products (NPs) as a critical source of new therapeutics has been greatly advanced by the development of heterologous expression platforms for biosynthetic gene clusters (BGCs). Among these, <i>Streptomyces</i> species have emerged as the most widely used and versatile chassis for expressing complex BGCs from diverse microbial origins. In this review, we provide a comprehensive analysis of over 450 peer-reviewed studies published between 2004 and 2024 that describe the heterologous expression of BGCs in <i>Streptomyces</i> hosts. We present a data-driven overview of expression trends across time, BGC types, donor species, and host strain preferences, offering the first quantitative perspective on how this field has evolved over two decades. Our review discusses the key factors influencing successful BGC expression in <i>Streptomyces</i>, including genomic integration strategies, regulatory elements, codon optimization, and precursor supply. We also examine the impact of synthetic biology tools, genome engineering, and host strain tailoring in overcoming common expression barriers. Special emphasis is placed on the role of heterologous expression in accessing silent or cryptic BGCs, elucidating biosynthetic pathways, and generating new-to-nature analogues through combinatorial biosynthesis. By integrating technological advances with practical case studies, we highlight how <i>Streptomyces</i>-based heterologous expression is enabling not only the efficient production of known compounds but also the discovery of structurally novel and biologically potent metabolites. This review aims to serve as a resource for researchers in natural products, synthetic biology, and drug discovery who seek to harness the full potential of microbial biosynthetic diversity.</p>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":" ","pages":""},"PeriodicalIF":10.6000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"<i>Streptomyces</i> as a versatile host platform for heterologous production of microbial natural products.\",\"authors\":\"Constanze Lasch, Maksym Myronovskyi, Andriy Luzhetskyy\",\"doi\":\"10.1039/d5np00036j\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Focus on 2004 to 2024The rediscovery of natural products (NPs) as a critical source of new therapeutics has been greatly advanced by the development of heterologous expression platforms for biosynthetic gene clusters (BGCs). Among these, <i>Streptomyces</i> species have emerged as the most widely used and versatile chassis for expressing complex BGCs from diverse microbial origins. In this review, we provide a comprehensive analysis of over 450 peer-reviewed studies published between 2004 and 2024 that describe the heterologous expression of BGCs in <i>Streptomyces</i> hosts. We present a data-driven overview of expression trends across time, BGC types, donor species, and host strain preferences, offering the first quantitative perspective on how this field has evolved over two decades. Our review discusses the key factors influencing successful BGC expression in <i>Streptomyces</i>, including genomic integration strategies, regulatory elements, codon optimization, and precursor supply. We also examine the impact of synthetic biology tools, genome engineering, and host strain tailoring in overcoming common expression barriers. Special emphasis is placed on the role of heterologous expression in accessing silent or cryptic BGCs, elucidating biosynthetic pathways, and generating new-to-nature analogues through combinatorial biosynthesis. By integrating technological advances with practical case studies, we highlight how <i>Streptomyces</i>-based heterologous expression is enabling not only the efficient production of known compounds but also the discovery of structurally novel and biologically potent metabolites. This review aims to serve as a resource for researchers in natural products, synthetic biology, and drug discovery who seek to harness the full potential of microbial biosynthetic diversity.</p>\",\"PeriodicalId\":94,\"journal\":{\"name\":\"Natural Product Reports\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Product Reports\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d5np00036j\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Product Reports","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5np00036j","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Streptomyces as a versatile host platform for heterologous production of microbial natural products.
Focus on 2004 to 2024The rediscovery of natural products (NPs) as a critical source of new therapeutics has been greatly advanced by the development of heterologous expression platforms for biosynthetic gene clusters (BGCs). Among these, Streptomyces species have emerged as the most widely used and versatile chassis for expressing complex BGCs from diverse microbial origins. In this review, we provide a comprehensive analysis of over 450 peer-reviewed studies published between 2004 and 2024 that describe the heterologous expression of BGCs in Streptomyces hosts. We present a data-driven overview of expression trends across time, BGC types, donor species, and host strain preferences, offering the first quantitative perspective on how this field has evolved over two decades. Our review discusses the key factors influencing successful BGC expression in Streptomyces, including genomic integration strategies, regulatory elements, codon optimization, and precursor supply. We also examine the impact of synthetic biology tools, genome engineering, and host strain tailoring in overcoming common expression barriers. Special emphasis is placed on the role of heterologous expression in accessing silent or cryptic BGCs, elucidating biosynthetic pathways, and generating new-to-nature analogues through combinatorial biosynthesis. By integrating technological advances with practical case studies, we highlight how Streptomyces-based heterologous expression is enabling not only the efficient production of known compounds but also the discovery of structurally novel and biologically potent metabolites. This review aims to serve as a resource for researchers in natural products, synthetic biology, and drug discovery who seek to harness the full potential of microbial biosynthetic diversity.
期刊介绍:
Natural Product Reports (NPR) serves as a pivotal critical review journal propelling advancements in all facets of natural products research, encompassing isolation, structural and stereochemical determination, biosynthesis, biological activity, and synthesis.
With a broad scope, NPR extends its influence into the wider bioinorganic, bioorganic, and chemical biology communities. Covering areas such as enzymology, nucleic acids, genetics, chemical ecology, carbohydrates, primary and secondary metabolism, and analytical techniques, the journal provides insightful articles focusing on key developments shaping the field, rather than offering exhaustive overviews of all results.
NPR encourages authors to infuse their perspectives on developments, trends, and future directions, fostering a dynamic exchange of ideas within the natural products research community.