上上同调的生成

IF 0.9 3区 数学 Q2 MATHEMATICS
Manoj Kummini, Mohit Upmanyu
{"title":"上上同调的生成","authors":"Manoj Kummini,&nbsp;Mohit Upmanyu","doi":"10.1112/blms.70132","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math> be a commutative Noetherian ring and <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>:</mo>\n <mi>X</mi>\n <mo>⟶</mo>\n <mo>Spec</mo>\n <mi>R</mi>\n </mrow>\n <annotation>$f: X \\longrightarrow \\operatorname{Spec}R$</annotation>\n </semantics></math> a proper smooth morphism, of relative dimension <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>. From Hartshorne, <i>Residues and Duality</i>, Springer, 1966, one knows that the trace map <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mo>Tr</mo>\n <mi>f</mi>\n </msub>\n <mo>:</mo>\n <msup>\n <mo>H</mo>\n <mi>n</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>,</mo>\n <msub>\n <mi>ω</mi>\n <mrow>\n <mi>X</mi>\n <mo>/</mo>\n <mi>R</mi>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>⟶</mo>\n <mi>R</mi>\n </mrow>\n <annotation>$\\operatorname{Tr}_f: \\operatorname{H}^n(X, \\omega _{X/R}) \\longrightarrow R$</annotation>\n </semantics></math> is an isomorphism when <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> has geometrically connected fibres. We construct an exact sequence that generates <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mo>Ext</mo>\n <mi>X</mi>\n <mi>n</mi>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>O</mi>\n <mi>X</mi>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>ω</mi>\n <mrow>\n <mi>X</mi>\n <mo>/</mo>\n <mi>R</mi>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <msup>\n <mo>H</mo>\n <mi>n</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>,</mo>\n <msub>\n <mi>ω</mi>\n <mrow>\n <mi>X</mi>\n <mo>/</mo>\n <mi>R</mi>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\operatorname{Ext}_X^n(\\mathcal O_X, \\omega _{X/R}) = \\operatorname{H}^n(X, \\omega _{X/R})$</annotation>\n </semantics></math> as an <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math>-module in the following cases:</p><p>\n </p><p>This partially answers a question raised by Lipman.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 9","pages":"2865-2884"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generators of top cohomology\",\"authors\":\"Manoj Kummini,&nbsp;Mohit Upmanyu\",\"doi\":\"10.1112/blms.70132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$R$</annotation>\\n </semantics></math> be a commutative Noetherian ring and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>:</mo>\\n <mi>X</mi>\\n <mo>⟶</mo>\\n <mo>Spec</mo>\\n <mi>R</mi>\\n </mrow>\\n <annotation>$f: X \\\\longrightarrow \\\\operatorname{Spec}R$</annotation>\\n </semantics></math> a proper smooth morphism, of relative dimension <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math>. From Hartshorne, <i>Residues and Duality</i>, Springer, 1966, one knows that the trace map <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mo>Tr</mo>\\n <mi>f</mi>\\n </msub>\\n <mo>:</mo>\\n <msup>\\n <mo>H</mo>\\n <mi>n</mi>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>,</mo>\\n <msub>\\n <mi>ω</mi>\\n <mrow>\\n <mi>X</mi>\\n <mo>/</mo>\\n <mi>R</mi>\\n </mrow>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <mo>⟶</mo>\\n <mi>R</mi>\\n </mrow>\\n <annotation>$\\\\operatorname{Tr}_f: \\\\operatorname{H}^n(X, \\\\omega _{X/R}) \\\\longrightarrow R$</annotation>\\n </semantics></math> is an isomorphism when <span></span><math>\\n <semantics>\\n <mi>f</mi>\\n <annotation>$f$</annotation>\\n </semantics></math> has geometrically connected fibres. We construct an exact sequence that generates <span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mo>Ext</mo>\\n <mi>X</mi>\\n <mi>n</mi>\\n </msubsup>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>O</mi>\\n <mi>X</mi>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>ω</mi>\\n <mrow>\\n <mi>X</mi>\\n <mo>/</mo>\\n <mi>R</mi>\\n </mrow>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <mo>=</mo>\\n <msup>\\n <mo>H</mo>\\n <mi>n</mi>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>,</mo>\\n <msub>\\n <mi>ω</mi>\\n <mrow>\\n <mi>X</mi>\\n <mo>/</mo>\\n <mi>R</mi>\\n </mrow>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\operatorname{Ext}_X^n(\\\\mathcal O_X, \\\\omega _{X/R}) = \\\\operatorname{H}^n(X, \\\\omega _{X/R})$</annotation>\\n </semantics></math> as an <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$R$</annotation>\\n </semantics></math>-module in the following cases:</p><p>\\n </p><p>This partially answers a question raised by Lipman.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 9\",\"pages\":\"2865-2884\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70132\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70132","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设R$ R$是一个交换诺瑟环,并且f: X {Spec $R} f: X \ lonightarrow \operatorname{Spec}R$是一个相对维数为n$ n$的光滑态射。从Hartshorne,残数与对偶性,b施普林格,1966,可知迹映射Tr f:H n (X, ω X / R) {R $\operatorname{Tr}_f:\operatorname{H}^n(X, \ ω _{X/R}) \ lonightarrow R$是一个同构,当f$ f$具有几何连接的纤维。我们构造一个精确的序列生成Ext X n (O X)ω X / R = H n (X,ω X/R)$ \operatorname{Ext}_X^n(\mathcal O_X, \omega _{X/R}) = \operatorname{H}^n(X, \omega _{X/R})$在以下情况下作为R$ R$ -模块:这部分地回答了利普曼提出的一个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Generators of top cohomology

Generators of top cohomology

Generators of top cohomology

Let R $R$ be a commutative Noetherian ring and f : X Spec R $f: X \longrightarrow \operatorname{Spec}R$ a proper smooth morphism, of relative dimension n $n$ . From Hartshorne, Residues and Duality, Springer, 1966, one knows that the trace map Tr f : H n ( X , ω X / R ) R $\operatorname{Tr}_f: \operatorname{H}^n(X, \omega _{X/R}) \longrightarrow R$ is an isomorphism when f $f$ has geometrically connected fibres. We construct an exact sequence that generates Ext X n ( O X , ω X / R ) = H n ( X , ω X / R ) $\operatorname{Ext}_X^n(\mathcal O_X, \omega _{X/R}) = \operatorname{H}^n(X, \omega _{X/R})$ as an R $R$ -module in the following cases:

This partially answers a question raised by Lipman.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信