相干反斯托克斯拉曼散射非共振背景去除和相位恢复方法综述:从实验方法到深度学习算法

IF 3.9 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Rajendhar Junjuri, Thomas Bocklitz
{"title":"相干反斯托克斯拉曼散射非共振背景去除和相位恢复方法综述:从实验方法到深度学习算法","authors":"Rajendhar Junjuri,&nbsp;Thomas Bocklitz","doi":"10.1002/adpr.202500035","DOIUrl":null,"url":null,"abstract":"<p>Coherent anti-Stokes Raman spectroscopy (CARS) is a nonlinear optical technique widely utilized for vibrational imaging and molecular characterization in fields such as chemistry, biology, medicine, and materials science. Despite the high signal intensity provided by CARS, the nonresonant background (NRB) can obscure valuable molecular fingerprint information. Therefore, effective NRB removal and phase retrieval are essential for achieving precise spectral analysis and accurate material characterization. This review provides a comprehensive overview of the evolution of CARS-NRB removal and phase retrieval methods, tracing the transition from classical experimental techniques and numerical algorithms to cutting-edge deep learning models. The discussion evaluates the strengths and limitations of each approach and explores future directions for integrating deep learning to improve phase retrieval accuracy and NRB removal efficiency in CARS applications.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"6 9","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202500035","citationCount":"0","resultStr":"{\"title\":\"Review of Coherent Anti-Stokes Raman Scattering Nonresonant Background Removal and Phase Retrieval Approaches: From Experimental Methods to Deep Learning Algorithms\",\"authors\":\"Rajendhar Junjuri,&nbsp;Thomas Bocklitz\",\"doi\":\"10.1002/adpr.202500035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Coherent anti-Stokes Raman spectroscopy (CARS) is a nonlinear optical technique widely utilized for vibrational imaging and molecular characterization in fields such as chemistry, biology, medicine, and materials science. Despite the high signal intensity provided by CARS, the nonresonant background (NRB) can obscure valuable molecular fingerprint information. Therefore, effective NRB removal and phase retrieval are essential for achieving precise spectral analysis and accurate material characterization. This review provides a comprehensive overview of the evolution of CARS-NRB removal and phase retrieval methods, tracing the transition from classical experimental techniques and numerical algorithms to cutting-edge deep learning models. The discussion evaluates the strengths and limitations of each approach and explores future directions for integrating deep learning to improve phase retrieval accuracy and NRB removal efficiency in CARS applications.</p>\",\"PeriodicalId\":7263,\"journal\":{\"name\":\"Advanced Photonics Research\",\"volume\":\"6 9\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202500035\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Photonics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adpr.202500035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics Research","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adpr.202500035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

相干反斯托克斯拉曼光谱(CARS)是一种非线性光学技术,广泛应用于化学、生物、医学和材料科学等领域的振动成像和分子表征。尽管CARS提供了高信号强度,但非共振背景(NRB)会掩盖有价值的分子指纹信息。因此,有效的NRB去除和相位恢复对于实现精确的光谱分析和准确的材料表征至关重要。本文全面概述了CARS-NRB去除和相位恢复方法的发展,追溯了从经典实验技术和数值算法到尖端深度学习模型的转变。讨论评估了每种方法的优势和局限性,并探讨了集成深度学习以提高CARS应用中相位检索精度和NRB去除效率的未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Review of Coherent Anti-Stokes Raman Scattering Nonresonant Background Removal and Phase Retrieval Approaches: From Experimental Methods to Deep Learning Algorithms

Review of Coherent Anti-Stokes Raman Scattering Nonresonant Background Removal and Phase Retrieval Approaches: From Experimental Methods to Deep Learning Algorithms

Review of Coherent Anti-Stokes Raman Scattering Nonresonant Background Removal and Phase Retrieval Approaches: From Experimental Methods to Deep Learning Algorithms

Review of Coherent Anti-Stokes Raman Scattering Nonresonant Background Removal and Phase Retrieval Approaches: From Experimental Methods to Deep Learning Algorithms

Review of Coherent Anti-Stokes Raman Scattering Nonresonant Background Removal and Phase Retrieval Approaches: From Experimental Methods to Deep Learning Algorithms

Coherent anti-Stokes Raman spectroscopy (CARS) is a nonlinear optical technique widely utilized for vibrational imaging and molecular characterization in fields such as chemistry, biology, medicine, and materials science. Despite the high signal intensity provided by CARS, the nonresonant background (NRB) can obscure valuable molecular fingerprint information. Therefore, effective NRB removal and phase retrieval are essential for achieving precise spectral analysis and accurate material characterization. This review provides a comprehensive overview of the evolution of CARS-NRB removal and phase retrieval methods, tracing the transition from classical experimental techniques and numerical algorithms to cutting-edge deep learning models. The discussion evaluates the strengths and limitations of each approach and explores future directions for integrating deep learning to improve phase retrieval accuracy and NRB removal efficiency in CARS applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
2.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信