Mikhail Khovanov, Vyacheslav Krushkal, John Nicholson
{"title":"关于2-配合物的普遍配对","authors":"Mikhail Khovanov, Vyacheslav Krushkal, John Nicholson","doi":"10.1112/blms.70130","DOIUrl":null,"url":null,"abstract":"<p>The universal pairing for manifolds was defined and shown to lack positivity in dimension 4 in [Freedman, Kitaev, Nayak, Slingerland, Walker, and Wang, J. Geom. Topol. <b>9</b> (2005), 2303–2317]. We prove an analogous result for 2-complexes, and show that the universal pairing does not detect the difference between simple homotopy equivalence and 3-deformations. The question of whether these two equivalence relations are different for 2-complexes is the subject of the Andrews–Curtis conjecture. We also discuss the universal pairing for higher dimensional complexes and show that it is not positive.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 9","pages":"2838-2853"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70130","citationCount":"0","resultStr":"{\"title\":\"On the universal pairing for 2-complexes\",\"authors\":\"Mikhail Khovanov, Vyacheslav Krushkal, John Nicholson\",\"doi\":\"10.1112/blms.70130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The universal pairing for manifolds was defined and shown to lack positivity in dimension 4 in [Freedman, Kitaev, Nayak, Slingerland, Walker, and Wang, J. Geom. Topol. <b>9</b> (2005), 2303–2317]. We prove an analogous result for 2-complexes, and show that the universal pairing does not detect the difference between simple homotopy equivalence and 3-deformations. The question of whether these two equivalence relations are different for 2-complexes is the subject of the Andrews–Curtis conjecture. We also discuss the universal pairing for higher dimensional complexes and show that it is not positive.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 9\",\"pages\":\"2838-2853\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70130\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70130\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70130","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在Freedman, Kitaev, Nayak, Slingerland, Walker和Wang, J. Geom中定义了流形的普遍配对,并证明了它在4维上缺乏正性。[j].植物学报,2005,23(3):393 - 397。我们证明了2-配合物的类似结果,并证明了普适配对不能检测到简单同伦等价与3-变形的区别。对于2-配合物,这两种等价关系是否不同的问题是Andrews-Curtis猜想的主题。我们还讨论了高维配合物的普遍配对,并证明了它是不正的。
The universal pairing for manifolds was defined and shown to lack positivity in dimension 4 in [Freedman, Kitaev, Nayak, Slingerland, Walker, and Wang, J. Geom. Topol. 9 (2005), 2303–2317]. We prove an analogous result for 2-complexes, and show that the universal pairing does not detect the difference between simple homotopy equivalence and 3-deformations. The question of whether these two equivalence relations are different for 2-complexes is the subject of the Andrews–Curtis conjecture. We also discuss the universal pairing for higher dimensional complexes and show that it is not positive.