Sonu Kumar, Ridong Jia, Yi Ji Tan, Thomas Caiwei Tan, Pascal Szriftgiser, G. Arun Kumar, Guillaume Ducournau, Arokiaswami Alphones, Ranjan Singh
{"title":"用于太赫兹无线通信的硅晶片拓扑Berry天线","authors":"Sonu Kumar, Ridong Jia, Yi Ji Tan, Thomas Caiwei Tan, Pascal Szriftgiser, G. Arun Kumar, Guillaume Ducournau, Arokiaswami Alphones, Ranjan Singh","doi":"10.1002/adpr.202500123","DOIUrl":null,"url":null,"abstract":"<p>Nonzero Berry curvature is central to the existence of topological edge states in electronic and photonic valley-Hall systems. While manipulating the Berry curvature in condensed matter systems is challenging, valley-Hall topological photonics offer unprecedented control, where the broken spatial inversion symmetry alters the Berry curvature. Herein, an all-silicon Berry antenna is presented, using a continuously varying geometry corresponding to a gradual change in Berry curvature. The on-chip topological edge mode with a tunable field extent is achieved to enhance effective antenna aperture, creating a high-gain on-chip photonic antenna with perfectly planar wavefronts. Experimentally, a maximum gain of 17 dBi that supports 20 Gbps chip-to-chip wireless communication is demonstrated, with active optical tunability of the antenna gain with modulation depths of 8 dBi. This Berry antenna paves the way for the development of complementary metal-oxide-semiconductor (CMOS) compatible topological Berry devices, with potential applications in integrated micro-/nano-photonics, next-generation wireless communications (6G to Xth generation), and terahertz detection and ranging.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"6 9","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202500123","citationCount":"0","resultStr":"{\"title\":\"Topological Berry Antenna on a Silicon Chip for Terahertz Wireless Communication\",\"authors\":\"Sonu Kumar, Ridong Jia, Yi Ji Tan, Thomas Caiwei Tan, Pascal Szriftgiser, G. Arun Kumar, Guillaume Ducournau, Arokiaswami Alphones, Ranjan Singh\",\"doi\":\"10.1002/adpr.202500123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nonzero Berry curvature is central to the existence of topological edge states in electronic and photonic valley-Hall systems. While manipulating the Berry curvature in condensed matter systems is challenging, valley-Hall topological photonics offer unprecedented control, where the broken spatial inversion symmetry alters the Berry curvature. Herein, an all-silicon Berry antenna is presented, using a continuously varying geometry corresponding to a gradual change in Berry curvature. The on-chip topological edge mode with a tunable field extent is achieved to enhance effective antenna aperture, creating a high-gain on-chip photonic antenna with perfectly planar wavefronts. Experimentally, a maximum gain of 17 dBi that supports 20 Gbps chip-to-chip wireless communication is demonstrated, with active optical tunability of the antenna gain with modulation depths of 8 dBi. This Berry antenna paves the way for the development of complementary metal-oxide-semiconductor (CMOS) compatible topological Berry devices, with potential applications in integrated micro-/nano-photonics, next-generation wireless communications (6G to Xth generation), and terahertz detection and ranging.</p>\",\"PeriodicalId\":7263,\"journal\":{\"name\":\"Advanced Photonics Research\",\"volume\":\"6 9\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202500123\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Photonics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adpr.202500123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics Research","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adpr.202500123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Topological Berry Antenna on a Silicon Chip for Terahertz Wireless Communication
Nonzero Berry curvature is central to the existence of topological edge states in electronic and photonic valley-Hall systems. While manipulating the Berry curvature in condensed matter systems is challenging, valley-Hall topological photonics offer unprecedented control, where the broken spatial inversion symmetry alters the Berry curvature. Herein, an all-silicon Berry antenna is presented, using a continuously varying geometry corresponding to a gradual change in Berry curvature. The on-chip topological edge mode with a tunable field extent is achieved to enhance effective antenna aperture, creating a high-gain on-chip photonic antenna with perfectly planar wavefronts. Experimentally, a maximum gain of 17 dBi that supports 20 Gbps chip-to-chip wireless communication is demonstrated, with active optical tunability of the antenna gain with modulation depths of 8 dBi. This Berry antenna paves the way for the development of complementary metal-oxide-semiconductor (CMOS) compatible topological Berry devices, with potential applications in integrated micro-/nano-photonics, next-generation wireless communications (6G to Xth generation), and terahertz detection and ranging.