孕激素和雄激素以不依赖于油菜素内酯的方式影响被子植物的根形态

IF 5.7 1区 生物学 Q1 PLANT SCIENCES
Karl Ludwig Körber, Sudip Paul, Jana Oklestkova, Emanuel Barth, Felix Feistel, Henk Oppermann, Ceren Oktay, Maja Dorfner, Miroslav Strnad, Jennifer Munkert, Alexandra C. U. Furch, Jan Klein
{"title":"孕激素和雄激素以不依赖于油菜素内酯的方式影响被子植物的根形态","authors":"Karl Ludwig Körber,&nbsp;Sudip Paul,&nbsp;Jana Oklestkova,&nbsp;Emanuel Barth,&nbsp;Felix Feistel,&nbsp;Henk Oppermann,&nbsp;Ceren Oktay,&nbsp;Maja Dorfner,&nbsp;Miroslav Strnad,&nbsp;Jennifer Munkert,&nbsp;Alexandra C. U. Furch,&nbsp;Jan Klein","doi":"10.1111/tpj.70459","DOIUrl":null,"url":null,"abstract":"<p>Progestogens and androgens are steroids found in a wide range of plants, but little is known about their physiological functions. In this study, we sowed seeds of angiosperms on progestogen- and androgen-containing medium and analysed their morphological effects. We further investigated the effects of progesterone and testosterone on brassinosteroid profiles and gene expression in <i>A. thaliana</i>. Additionally, we examined the effects of progesterone and testosterone on <i>A. thaliana</i> plants overexpressing the steroid 5α-reductase DET2. We found that progestogens and androgens have strong negative effects on root length, especially in <i>Brassicaceae</i> species. In addition, these steroids led to uncoordinated cell growth and increased lateral root formation. We failed to detect an effect on endogenous brassinosteroid levels and gene expression of brassinosteroid-regulated genes. The overexpression of DET2 led to increased root growth, but the effects of progesterone and testosterone were not reduced. We conclude that progestogens and androgens act in a brassinosteroid-independent manner. This suggests that progestogens and androgens could represent a potential new class of plant steroid signalling molecules.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"123 5","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/tpj.70459","citationCount":"0","resultStr":"{\"title\":\"Progestogens and androgens influence root morphology of angiosperms in a brassinosteroid-independent manner\",\"authors\":\"Karl Ludwig Körber,&nbsp;Sudip Paul,&nbsp;Jana Oklestkova,&nbsp;Emanuel Barth,&nbsp;Felix Feistel,&nbsp;Henk Oppermann,&nbsp;Ceren Oktay,&nbsp;Maja Dorfner,&nbsp;Miroslav Strnad,&nbsp;Jennifer Munkert,&nbsp;Alexandra C. U. Furch,&nbsp;Jan Klein\",\"doi\":\"10.1111/tpj.70459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Progestogens and androgens are steroids found in a wide range of plants, but little is known about their physiological functions. In this study, we sowed seeds of angiosperms on progestogen- and androgen-containing medium and analysed their morphological effects. We further investigated the effects of progesterone and testosterone on brassinosteroid profiles and gene expression in <i>A. thaliana</i>. Additionally, we examined the effects of progesterone and testosterone on <i>A. thaliana</i> plants overexpressing the steroid 5α-reductase DET2. We found that progestogens and androgens have strong negative effects on root length, especially in <i>Brassicaceae</i> species. In addition, these steroids led to uncoordinated cell growth and increased lateral root formation. We failed to detect an effect on endogenous brassinosteroid levels and gene expression of brassinosteroid-regulated genes. The overexpression of DET2 led to increased root growth, but the effects of progesterone and testosterone were not reduced. We conclude that progestogens and androgens act in a brassinosteroid-independent manner. This suggests that progestogens and androgens could represent a potential new class of plant steroid signalling molecules.</p>\",\"PeriodicalId\":233,\"journal\":{\"name\":\"The Plant Journal\",\"volume\":\"123 5\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/tpj.70459\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Plant Journal\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/tpj.70459\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/tpj.70459","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

孕激素和雄激素是广泛存在于植物中的甾体激素,但对其生理功能知之甚少。本研究将被子植物种子播种在含孕激素和雄激素的培养基上,并对其形态效果进行了分析。我们进一步研究了黄体酮和睾酮对拟南芥油菜素内酯谱和基因表达的影响。此外,我们还研究了黄体酮和睾酮对过表达类固醇5α-还原酶DET2的拟南芥植株的影响。我们发现孕激素和雄激素对根长有很强的负面影响,尤其是在芸苔科植物中。此外,这些类固醇导致细胞生长不协调,侧根形成增加。我们没有检测到内源性油菜素内酯水平和油菜素内酯调节基因表达的影响。DET2的过表达促进了根的生长,但黄体酮和睾酮的作用没有减弱。我们的结论是,孕激素和雄激素的作用是不依赖于油菜素内酯的。这表明孕激素和雄激素可能代表了一类潜在的植物类固醇信号分子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Progestogens and androgens influence root morphology of angiosperms in a brassinosteroid-independent manner

Progestogens and androgens influence root morphology of angiosperms in a brassinosteroid-independent manner

Progestogens and androgens are steroids found in a wide range of plants, but little is known about their physiological functions. In this study, we sowed seeds of angiosperms on progestogen- and androgen-containing medium and analysed their morphological effects. We further investigated the effects of progesterone and testosterone on brassinosteroid profiles and gene expression in A. thaliana. Additionally, we examined the effects of progesterone and testosterone on A. thaliana plants overexpressing the steroid 5α-reductase DET2. We found that progestogens and androgens have strong negative effects on root length, especially in Brassicaceae species. In addition, these steroids led to uncoordinated cell growth and increased lateral root formation. We failed to detect an effect on endogenous brassinosteroid levels and gene expression of brassinosteroid-regulated genes. The overexpression of DET2 led to increased root growth, but the effects of progesterone and testosterone were not reduced. We conclude that progestogens and androgens act in a brassinosteroid-independent manner. This suggests that progestogens and androgens could represent a potential new class of plant steroid signalling molecules.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Plant Journal
The Plant Journal 生物-植物科学
CiteScore
13.10
自引率
4.20%
发文量
415
审稿时长
2.3 months
期刊介绍: Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community. Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信