弦图、偶孔图和有界树宽的稀疏障碍

IF 1 3区 数学 Q2 MATHEMATICS
Sepehr Hajebi
{"title":"弦图、偶孔图和有界树宽的稀疏障碍","authors":"Sepehr Hajebi","doi":"10.1002/jgt.23276","DOIUrl":null,"url":null,"abstract":"<p>Even-hole-free graphs pose a central challenge in identifying hereditary classes of bounded treewidth. We investigate this matter by presenting and studying the following conjecture: for an integer <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n \n <mo>≥</mo>\n \n <mn>4</mn>\n </mrow>\n </mrow>\n </semantics></math> and a graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n </semantics></math>, every even-hole-free graph of large enough treewidth has an induced subgraph isomorphic to either <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mi>t</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> or <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n </semantics></math>, if (and only if) <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n </semantics></math> is a <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mn>4</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-free chordal graph. The “only if” part follows from the properties of the so-called <i>layered wheels</i>, a construction by Sintiari and Trotignon consisting of (even-hole, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mn>4</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>)-free graphs with arbitrarily large treewidth. Alecu et al. proved recently that the conjecture holds in two special cases: (a) when <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n \n <mo>=</mo>\n \n <mn>4</mn>\n </mrow>\n </mrow>\n </semantics></math>; and (b) when <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n \n <mo>=</mo>\n \n <mstyle>\n <mtext>cone</mtext>\n </mstyle>\n \n <mrow>\n <mo>(</mo>\n \n <mi>F</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> for some forest <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n </semantics></math>; that is, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n </semantics></math> is obtained from a forest <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n </semantics></math> by adding a universal vertex. Our first result is a common strengthening of (a) and (b): for an integer <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n \n <mo>≥</mo>\n \n <mn>4</mn>\n </mrow>\n </mrow>\n </semantics></math> and graphs <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n </semantics></math>, (even-hole, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mstyle>\n <mtext>cone</mtext>\n </mstyle>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mstyle>\n <mtext>cone</mtext>\n </mstyle>\n \n <mrow>\n <mo>(</mo>\n \n <mi>F</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>,</mo>\n \n <mi>H</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>K</mi>\n \n <mi>t</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>)-free graphs have bounded treewidth if and only if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n </mrow>\n </mrow>\n </semantics></math> is a forest and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n </semantics></math> is a <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mn>4</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-free chordal graph. Also, for general <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n \n <mo>≥</mo>\n \n <mn>4</mn>\n </mrow>\n </mrow>\n </semantics></math>, we push the current state of the art further than (b) by settling the conjecture for the smallest choices of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n </semantics></math> that are <i>not</i> coned forests. The latter follows from our second result: we prove the conjecture when <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n </semantics></math> is a <i>crystal</i>; that is, a graph obtained from arbitrarily many coned double stars by gluing them together along the “middle” edges of the double stars. In the first version of this paper, we suggested the following which is a strengthening of our main conjecture: for every <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n \n <mo>≥</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n </semantics></math>, every graph of sufficiently large treewidth has an induced subgraph of treewidth <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n </mrow>\n </mrow>\n </semantics></math> which is either complete, complete bipartite, or 2-degenerate. This strengthening has now been refuted by Chudnovsky and Trotignon [On treewidth and maximum cliques, \n<span>arxiv:2405.07471</span>, 2024].</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"110 3","pages":"351-365"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23276","citationCount":"0","resultStr":"{\"title\":\"Chordal Graphs, Even-Hole-Free Graphs and Sparse Obstructions to Bounded Treewidth\",\"authors\":\"Sepehr Hajebi\",\"doi\":\"10.1002/jgt.23276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Even-hole-free graphs pose a central challenge in identifying hereditary classes of bounded treewidth. We investigate this matter by presenting and studying the following conjecture: for an integer <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>t</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>4</mn>\\n </mrow>\\n </mrow>\\n </semantics></math> and a graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, every even-hole-free graph of large enough treewidth has an induced subgraph isomorphic to either <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mi>t</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> or <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, if (and only if) <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is a <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mn>4</mn>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>-free chordal graph. The “only if” part follows from the properties of the so-called <i>layered wheels</i>, a construction by Sintiari and Trotignon consisting of (even-hole, <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mn>4</mn>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>)-free graphs with arbitrarily large treewidth. Alecu et al. proved recently that the conjecture holds in two special cases: (a) when <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>t</mi>\\n \\n <mo>=</mo>\\n \\n <mn>4</mn>\\n </mrow>\\n </mrow>\\n </semantics></math>; and (b) when <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n \\n <mo>=</mo>\\n \\n <mstyle>\\n <mtext>cone</mtext>\\n </mstyle>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>F</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> for some forest <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>; that is, <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is obtained from a forest <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> by adding a universal vertex. Our first result is a common strengthening of (a) and (b): for an integer <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>t</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>4</mn>\\n </mrow>\\n </mrow>\\n </semantics></math> and graphs <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, (even-hole, <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mstyle>\\n <mtext>cone</mtext>\\n </mstyle>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mstyle>\\n <mtext>cone</mtext>\\n </mstyle>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>F</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>,</mo>\\n \\n <mi>H</mi>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>K</mi>\\n \\n <mi>t</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>)-free graphs have bounded treewidth if and only if <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is a forest and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is a <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mn>4</mn>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>-free chordal graph. Also, for general <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>t</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>4</mn>\\n </mrow>\\n </mrow>\\n </semantics></math>, we push the current state of the art further than (b) by settling the conjecture for the smallest choices of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> that are <i>not</i> coned forests. The latter follows from our second result: we prove the conjecture when <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is a <i>crystal</i>; that is, a graph obtained from arbitrarily many coned double stars by gluing them together along the “middle” edges of the double stars. In the first version of this paper, we suggested the following which is a strengthening of our main conjecture: for every <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>t</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </mrow>\\n </semantics></math>, every graph of sufficiently large treewidth has an induced subgraph of treewidth <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> which is either complete, complete bipartite, or 2-degenerate. This strengthening has now been refuted by Chudnovsky and Trotignon [On treewidth and maximum cliques, \\n<span>arxiv:2405.07471</span>, 2024].</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"110 3\",\"pages\":\"351-365\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23276\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23276\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23276","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在确定有界树宽的遗传类时,偶孔图提出了一个核心挑战。我们通过提出和研究以下猜想来调查这个问题:对于整数t≥4和图H,每一个树宽足够大的无偶孔图都有一个诱导子图同构于K t或H,当(且仅当)H是k4自由弦图。“只有如果”的部分来自于所谓的分层轮的性质,这是Sintiari和Trotignon的一种构造,由具有任意大树宽的(偶数孔,K 4)自由图组成。Alecu等人最近证明了该猜想在两种特殊情况下成立:(a)当t = 4时;(b)当H =锥(F)时对于某些森林F;也就是说,H是通过添加一个泛顶点从森林F中得到的。 我们的第一个结果是(a)和(b)的共同强化:对于整数t≥4,图F和H,偶数孔;圆锥(圆锥)F), h;K (t)自由图有有界树宽当且仅当F是森林且H是无k4弦图。同样,当t≥4时,我们通过解决非锥形森林的最小选择H的猜想,将当前的技术水平推向了(b)。后者是由我们的第二个结果得出的:我们证明了当H是晶体时的猜想;也就是说,通过将任意多颗锥形双星沿着双星的“中间”边缘粘合在一起而得到的图形。在本文的第一个版本中,我们提出了以下建议,这是对我们主要猜想的加强:当t≥1时,每个足够大树宽的图都有一个树宽为t的诱导子图,该子图要么是完全的,要么是完全二部的,要么是2-简并的。这种强化现在已经被Chudnovsky和Trotignon [On treewidth and maximum cliques, arxiv:2405.07471, 2024]所驳斥。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Chordal Graphs, Even-Hole-Free Graphs and Sparse Obstructions to Bounded Treewidth

Chordal Graphs, Even-Hole-Free Graphs and Sparse Obstructions to Bounded Treewidth

Even-hole-free graphs pose a central challenge in identifying hereditary classes of bounded treewidth. We investigate this matter by presenting and studying the following conjecture: for an integer t 4 and a graph H , every even-hole-free graph of large enough treewidth has an induced subgraph isomorphic to either K t or H , if (and only if) H is a K 4 -free chordal graph. The “only if” part follows from the properties of the so-called layered wheels, a construction by Sintiari and Trotignon consisting of (even-hole, K 4 )-free graphs with arbitrarily large treewidth. Alecu et al. proved recently that the conjecture holds in two special cases: (a) when t = 4 ; and (b) when H = cone ( F ) for some forest F ; that is, H is obtained from a forest F by adding a universal vertex. Our first result is a common strengthening of (a) and (b): for an integer t 4 and graphs F and H , (even-hole, cone ( cone ( F ) ) , H , K t )-free graphs have bounded treewidth if and only if F is a forest and H is a K 4 -free chordal graph. Also, for general t 4 , we push the current state of the art further than (b) by settling the conjecture for the smallest choices of H that are not coned forests. The latter follows from our second result: we prove the conjecture when H is a crystal; that is, a graph obtained from arbitrarily many coned double stars by gluing them together along the “middle” edges of the double stars. In the first version of this paper, we suggested the following which is a strengthening of our main conjecture: for every t 1 , every graph of sufficiently large treewidth has an induced subgraph of treewidth t which is either complete, complete bipartite, or 2-degenerate. This strengthening has now been refuted by Chudnovsky and Trotignon [On treewidth and maximum cliques, arxiv:2405.07471, 2024].

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信