{"title":"潮汐促进了印度洋的初级生产","authors":"S. J. Ditkovsky, L. Resplandy","doi":"10.1029/2025GB008596","DOIUrl":null,"url":null,"abstract":"<p>Tides are a critical source of energy and influence transport in the ocean, with potential implications for biogeochemical cycling and biological production. Here, we quantify the influence of tides on nutrient transport and primary production in the northern Indian Ocean, where topographic features generate hotspots of tidal processes and primary production supports important regional food supply via aquaculture and fisheries. Using a high-resolution regional ocean model, we investigate the effects of diabatic tidal mixing (i.e., irreversible mixing that stirs nutrients) and adiabatic motions associated with internal tides (i.e., reversible motions that shift water masses without mixing) on primary production. We find that tides increase regional primary production by 5% on average, with seasonal increases reaching up to 10%–15% in open ocean regions and 30% in coastal regions. Tidal mixing sets the magnitude of tide-driven production by supplying nutrients to the euphotic zone, and controls the contrast between the stronger coastal response and milder open ocean response. Background stratification and nutricline depth control the seasonality in tide-driven production at a given location: tides accelerate the onset and delay termination of blooms in productive regions (e.g., Arabian Sea) and reinforce bloom peak in less productive regions (e.g., Bay of Bengal). Adiabatic motions have only a small effect, indicating that tidal influences can be effectively parameterized in global models without costly high spatio-temporal resolution and explicit tidal forcing. We discuss the influence of tidal mixing on biogeochemistry beyond primary production and how it may change in a warmer and more stratified ocean.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"39 9","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025GB008596","citationCount":"0","resultStr":"{\"title\":\"Tides Boost Primary Production in the Indian Ocean\",\"authors\":\"S. J. Ditkovsky, L. Resplandy\",\"doi\":\"10.1029/2025GB008596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Tides are a critical source of energy and influence transport in the ocean, with potential implications for biogeochemical cycling and biological production. Here, we quantify the influence of tides on nutrient transport and primary production in the northern Indian Ocean, where topographic features generate hotspots of tidal processes and primary production supports important regional food supply via aquaculture and fisheries. Using a high-resolution regional ocean model, we investigate the effects of diabatic tidal mixing (i.e., irreversible mixing that stirs nutrients) and adiabatic motions associated with internal tides (i.e., reversible motions that shift water masses without mixing) on primary production. We find that tides increase regional primary production by 5% on average, with seasonal increases reaching up to 10%–15% in open ocean regions and 30% in coastal regions. Tidal mixing sets the magnitude of tide-driven production by supplying nutrients to the euphotic zone, and controls the contrast between the stronger coastal response and milder open ocean response. Background stratification and nutricline depth control the seasonality in tide-driven production at a given location: tides accelerate the onset and delay termination of blooms in productive regions (e.g., Arabian Sea) and reinforce bloom peak in less productive regions (e.g., Bay of Bengal). Adiabatic motions have only a small effect, indicating that tidal influences can be effectively parameterized in global models without costly high spatio-temporal resolution and explicit tidal forcing. We discuss the influence of tidal mixing on biogeochemistry beyond primary production and how it may change in a warmer and more stratified ocean.</p>\",\"PeriodicalId\":12729,\"journal\":{\"name\":\"Global Biogeochemical Cycles\",\"volume\":\"39 9\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025GB008596\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Biogeochemical Cycles\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025GB008596\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Biogeochemical Cycles","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025GB008596","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Tides Boost Primary Production in the Indian Ocean
Tides are a critical source of energy and influence transport in the ocean, with potential implications for biogeochemical cycling and biological production. Here, we quantify the influence of tides on nutrient transport and primary production in the northern Indian Ocean, where topographic features generate hotspots of tidal processes and primary production supports important regional food supply via aquaculture and fisheries. Using a high-resolution regional ocean model, we investigate the effects of diabatic tidal mixing (i.e., irreversible mixing that stirs nutrients) and adiabatic motions associated with internal tides (i.e., reversible motions that shift water masses without mixing) on primary production. We find that tides increase regional primary production by 5% on average, with seasonal increases reaching up to 10%–15% in open ocean regions and 30% in coastal regions. Tidal mixing sets the magnitude of tide-driven production by supplying nutrients to the euphotic zone, and controls the contrast between the stronger coastal response and milder open ocean response. Background stratification and nutricline depth control the seasonality in tide-driven production at a given location: tides accelerate the onset and delay termination of blooms in productive regions (e.g., Arabian Sea) and reinforce bloom peak in less productive regions (e.g., Bay of Bengal). Adiabatic motions have only a small effect, indicating that tidal influences can be effectively parameterized in global models without costly high spatio-temporal resolution and explicit tidal forcing. We discuss the influence of tidal mixing on biogeochemistry beyond primary production and how it may change in a warmer and more stratified ocean.
期刊介绍:
Global Biogeochemical Cycles (GBC) features research on regional to global biogeochemical interactions, as well as more local studies that demonstrate fundamental implications for biogeochemical processing at regional or global scales. Published papers draw on a wide array of methods and knowledge and extend in time from the deep geologic past to recent historical and potential future interactions. This broad scope includes studies that elucidate human activities as interactive components of biogeochemical cycles and physical Earth Systems including climate. Authors are required to make their work accessible to a broad interdisciplinary range of scientists.