增材制造金属与陶瓷树脂集成种植牙冠的两相材料形状优化

IF 2.4 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Joseph Way, Sanjay Joshi
{"title":"增材制造金属与陶瓷树脂集成种植牙冠的两相材料形状优化","authors":"Joseph Way,&nbsp;Sanjay Joshi","doi":"10.1002/cnm.70095","DOIUrl":null,"url":null,"abstract":"<p>The screw-retained implant-supported crown is a durable, aesthetic restoration, but debonding between the crown and abutment remains a challenge to survivability. The purpose of this work was to devise an abutment shape that can be embedded into the crown while the crown is being additively manufactured. The result was a mechanically retained, no-adhesive abutment and crown unit that is mounted to the implant fixture. To generate the best internal shape for the new restoration design concept, a shape optimization method was developed using nTop software with the objective of pursuing low structural compliance (maximizing stiffness), withstanding mastication loads, and complying with the unique manufacturing constraints of the proposed design. The optimization results showed a 39% and 51% reduction in structural compliance for molar and incisor restorations. Validation finite element analysis (FEA) on the molar restoration was accomplished for comparison of the initial, optimized, and traditional Ti-Base screw-retained designs. Under vertical and angled loads, the optimized design reduced maximum Von Mises stress by 38% compared with the traditional design, and under upwards load, the optimized design reduced maximum principal shear strain along the abutment-crown joint boundary by 67%. A successful prototype was created using a stereolithography (SLA) printer for fit and form testing. The design concept in this study showed promise as an alternate method to join the two components, while removing the debonding failure mode and maintaining aesthetics and strength. This may offer a more suitable screw-retained restoration option for patients with constraints such as small interocclusal space.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":"41 9","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnm.70095","citationCount":"0","resultStr":"{\"title\":\"Two-Phase Material Shape Optimization of an Additively Manufactured Integrated Metal and Ceramic Resin Implant-Supported Dental Crown\",\"authors\":\"Joseph Way,&nbsp;Sanjay Joshi\",\"doi\":\"10.1002/cnm.70095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The screw-retained implant-supported crown is a durable, aesthetic restoration, but debonding between the crown and abutment remains a challenge to survivability. The purpose of this work was to devise an abutment shape that can be embedded into the crown while the crown is being additively manufactured. The result was a mechanically retained, no-adhesive abutment and crown unit that is mounted to the implant fixture. To generate the best internal shape for the new restoration design concept, a shape optimization method was developed using nTop software with the objective of pursuing low structural compliance (maximizing stiffness), withstanding mastication loads, and complying with the unique manufacturing constraints of the proposed design. The optimization results showed a 39% and 51% reduction in structural compliance for molar and incisor restorations. Validation finite element analysis (FEA) on the molar restoration was accomplished for comparison of the initial, optimized, and traditional Ti-Base screw-retained designs. Under vertical and angled loads, the optimized design reduced maximum Von Mises stress by 38% compared with the traditional design, and under upwards load, the optimized design reduced maximum principal shear strain along the abutment-crown joint boundary by 67%. A successful prototype was created using a stereolithography (SLA) printer for fit and form testing. The design concept in this study showed promise as an alternate method to join the two components, while removing the debonding failure mode and maintaining aesthetics and strength. This may offer a more suitable screw-retained restoration option for patients with constraints such as small interocclusal space.</p>\",\"PeriodicalId\":50349,\"journal\":{\"name\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"volume\":\"41 9\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnm.70095\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cnm.70095\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnm.70095","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

螺钉保留种植体支持的冠是一种耐用、美观的修复方法,但冠与基台之间的脱粘仍然是生存能力的挑战。这项工作的目的是设计一个基台形状,可以嵌入到冠,而冠是增材制造。结果是机械保留,无粘合剂的基台和冠单元安装在种植体固定装置上。为了为新的修复设计概念产生最佳的内部形状,使用nTop软件开发了一种形状优化方法,其目标是追求低结构顺应性(最大刚度),承受咀嚼载荷,并符合所提出设计的独特制造约束。优化结果显示磨牙和切牙修复体的结构顺应性分别降低39%和51%。对磨牙修复体进行了验证性有限元分析(FEA),以比较初始、优化和传统的钛基螺钉保留设计。在竖向和角度荷载作用下,优化设计使最大Von Mises应力较传统设计降低38%;在向上荷载作用下,优化设计使沿台冠结合部最大主剪应变降低67%。使用立体光刻(SLA)打印机创建了一个成功的原型,用于配合和形状测试。本研究中的设计概念显示了作为连接两个组件的替代方法的希望,同时消除了脱粘的失效模式,并保持了美学和强度。这可能为具有咬合间隙小等限制的患者提供更合适的螺钉保留修复选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Two-Phase Material Shape Optimization of an Additively Manufactured Integrated Metal and Ceramic Resin Implant-Supported Dental Crown

Two-Phase Material Shape Optimization of an Additively Manufactured Integrated Metal and Ceramic Resin Implant-Supported Dental Crown

The screw-retained implant-supported crown is a durable, aesthetic restoration, but debonding between the crown and abutment remains a challenge to survivability. The purpose of this work was to devise an abutment shape that can be embedded into the crown while the crown is being additively manufactured. The result was a mechanically retained, no-adhesive abutment and crown unit that is mounted to the implant fixture. To generate the best internal shape for the new restoration design concept, a shape optimization method was developed using nTop software with the objective of pursuing low structural compliance (maximizing stiffness), withstanding mastication loads, and complying with the unique manufacturing constraints of the proposed design. The optimization results showed a 39% and 51% reduction in structural compliance for molar and incisor restorations. Validation finite element analysis (FEA) on the molar restoration was accomplished for comparison of the initial, optimized, and traditional Ti-Base screw-retained designs. Under vertical and angled loads, the optimized design reduced maximum Von Mises stress by 38% compared with the traditional design, and under upwards load, the optimized design reduced maximum principal shear strain along the abutment-crown joint boundary by 67%. A successful prototype was created using a stereolithography (SLA) printer for fit and form testing. The design concept in this study showed promise as an alternate method to join the two components, while removing the debonding failure mode and maintaining aesthetics and strength. This may offer a more suitable screw-retained restoration option for patients with constraints such as small interocclusal space.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal for Numerical Methods in Biomedical Engineering
International Journal for Numerical Methods in Biomedical Engineering ENGINEERING, BIOMEDICAL-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
4.50
自引率
9.50%
发文量
103
审稿时长
3 months
期刊介绍: All differential equation based models for biomedical applications and their novel solutions (using either established numerical methods such as finite difference, finite element and finite volume methods or new numerical methods) are within the scope of this journal. Manuscripts with experimental and analytical themes are also welcome if a component of the paper deals with numerical methods. Special cases that may not involve differential equations such as image processing, meshing and artificial intelligence are within the scope. Any research that is broadly linked to the wellbeing of the human body, either directly or indirectly, is also within the scope of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信