基于变分贝叶斯的扩展目标定向分布式跟踪

IF 1.5 4区 管理学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Qinqin Jiao
{"title":"基于变分贝叶斯的扩展目标定向分布式跟踪","authors":"Qinqin Jiao","doi":"10.1049/rsn2.70059","DOIUrl":null,"url":null,"abstract":"<p>In this work, we propose an alternative distributed tracking approach for extended target with time-varying orientation in a sensor network. Within the random matrix framework, we employ a Gaussian prior for the orientation, the inverse Gamma priors for the diagonal elements of the extent matrix, and a Gamma prior for the measurement rate. Using the Gamma Gaussian Inverse Gamma Gaussian (GGIGG) state model, we derive a centralised tracking approach based on the variational Bayesian technique. Subsequently, we introduce a distributed variational measurement update that leverages convex combination fusion. Closed-form expressions for the unknown variables are derived under a consensus scheme. The resulting algorithm efficiently computes approximate posterior densities for the kinematic state, extent, orientation, and measurement rate in a distributed manner. The effectiveness of the proposed distributed tracking method is validated through numerical experiments, with results showing that the proposed algorithm outperforms existing method based on the multiplicative error model.</p>","PeriodicalId":50377,"journal":{"name":"Iet Radar Sonar and Navigation","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.70059","citationCount":"0","resultStr":"{\"title\":\"Distributed Tracking of Extended Target With Orientation Using Variational Bayesian\",\"authors\":\"Qinqin Jiao\",\"doi\":\"10.1049/rsn2.70059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, we propose an alternative distributed tracking approach for extended target with time-varying orientation in a sensor network. Within the random matrix framework, we employ a Gaussian prior for the orientation, the inverse Gamma priors for the diagonal elements of the extent matrix, and a Gamma prior for the measurement rate. Using the Gamma Gaussian Inverse Gamma Gaussian (GGIGG) state model, we derive a centralised tracking approach based on the variational Bayesian technique. Subsequently, we introduce a distributed variational measurement update that leverages convex combination fusion. Closed-form expressions for the unknown variables are derived under a consensus scheme. The resulting algorithm efficiently computes approximate posterior densities for the kinematic state, extent, orientation, and measurement rate in a distributed manner. The effectiveness of the proposed distributed tracking method is validated through numerical experiments, with results showing that the proposed algorithm outperforms existing method based on the multiplicative error model.</p>\",\"PeriodicalId\":50377,\"journal\":{\"name\":\"Iet Radar Sonar and Navigation\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.70059\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Radar Sonar and Navigation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/rsn2.70059\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Radar Sonar and Navigation","FirstCategoryId":"94","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/rsn2.70059","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们提出了一种替代的分布式跟踪方法,用于传感器网络中具有时变方向的扩展目标。在随机矩阵框架中,我们对方向使用高斯先验,对范围矩阵的对角线元素使用逆Gamma先验,对测量率使用Gamma先验。利用伽马高斯反伽马高斯(GGIGG)状态模型,我们推导了一种基于变分贝叶斯技术的集中跟踪方法。随后,我们引入了一种利用凸组合融合的分布式变分测量更新。在一致格式下导出了未知变量的封闭表达式。所得到的算法有效地以分布式方式计算运动状态、范围、方向和测量率的近似后验密度。通过数值实验验证了所提分布式跟踪方法的有效性,结果表明所提算法优于现有基于乘法误差模型的分布式跟踪方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Distributed Tracking of Extended Target With Orientation Using Variational Bayesian

Distributed Tracking of Extended Target With Orientation Using Variational Bayesian

Distributed Tracking of Extended Target With Orientation Using Variational Bayesian

Distributed Tracking of Extended Target With Orientation Using Variational Bayesian

Distributed Tracking of Extended Target With Orientation Using Variational Bayesian

Distributed Tracking of Extended Target With Orientation Using Variational Bayesian

In this work, we propose an alternative distributed tracking approach for extended target with time-varying orientation in a sensor network. Within the random matrix framework, we employ a Gaussian prior for the orientation, the inverse Gamma priors for the diagonal elements of the extent matrix, and a Gamma prior for the measurement rate. Using the Gamma Gaussian Inverse Gamma Gaussian (GGIGG) state model, we derive a centralised tracking approach based on the variational Bayesian technique. Subsequently, we introduce a distributed variational measurement update that leverages convex combination fusion. Closed-form expressions for the unknown variables are derived under a consensus scheme. The resulting algorithm efficiently computes approximate posterior densities for the kinematic state, extent, orientation, and measurement rate in a distributed manner. The effectiveness of the proposed distributed tracking method is validated through numerical experiments, with results showing that the proposed algorithm outperforms existing method based on the multiplicative error model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iet Radar Sonar and Navigation
Iet Radar Sonar and Navigation 工程技术-电信学
CiteScore
4.10
自引率
11.80%
发文量
137
审稿时长
3.4 months
期刊介绍: IET Radar, Sonar & Navigation covers the theory and practice of systems and signals for radar, sonar, radiolocation, navigation, and surveillance purposes, in aerospace and terrestrial applications. Examples include advances in waveform design, clutter and detection, electronic warfare, adaptive array and superresolution methods, tracking algorithms, synthetic aperture, and target recognition techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信