{"title":"Erdős Julia集合中的空间","authors":"David S. Lipham","doi":"10.1112/blms.70131","DOIUrl":null,"url":null,"abstract":"<p>We prove that the rational Hilbert space, known as the <i>Erdős space</i> <span></span><math>\n <semantics>\n <mi>E</mi>\n <annotation>$\\mathfrak {E}$</annotation>\n </semantics></math>, surfaces in complex dynamics via iteration of <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>e</mi>\n <mi>z</mi>\n </msup>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$e^z-1$</annotation>\n </semantics></math>. More precisely, <span></span><math>\n <semantics>\n <mi>E</mi>\n <annotation>$\\mathfrak {E}$</annotation>\n </semantics></math> is topologically equivalent to the set of endpoints of the Julia set <span></span><math>\n <semantics>\n <mrow>\n <mi>J</mi>\n <mo>(</mo>\n <msup>\n <mi>e</mi>\n <mi>z</mi>\n </msup>\n <mo>−</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$J(e^z-1)$</annotation>\n </semantics></math> whose orbits tend to infinity in the imaginary direction.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 9","pages":"2854-2864"},"PeriodicalIF":0.9000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Erdős space in Julia sets\",\"authors\":\"David S. Lipham\",\"doi\":\"10.1112/blms.70131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that the rational Hilbert space, known as the <i>Erdős space</i> <span></span><math>\\n <semantics>\\n <mi>E</mi>\\n <annotation>$\\\\mathfrak {E}$</annotation>\\n </semantics></math>, surfaces in complex dynamics via iteration of <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>e</mi>\\n <mi>z</mi>\\n </msup>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$e^z-1$</annotation>\\n </semantics></math>. More precisely, <span></span><math>\\n <semantics>\\n <mi>E</mi>\\n <annotation>$\\\\mathfrak {E}$</annotation>\\n </semantics></math> is topologically equivalent to the set of endpoints of the Julia set <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>J</mi>\\n <mo>(</mo>\\n <msup>\\n <mi>e</mi>\\n <mi>z</mi>\\n </msup>\\n <mo>−</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$J(e^z-1)$</annotation>\\n </semantics></math> whose orbits tend to infinity in the imaginary direction.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 9\",\"pages\":\"2854-2864\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70131\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70131","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们证明了理性希尔伯特空间,即Erdős空间E $\mathfrak {E}$,在复杂动力学中通过ez−1$ E ^z-1$的迭代得到曲面。更准确地说,E $\mathfrak {E}$在拓扑上等价于Julia集合J(E z−1)$ J(E ^z-1)$的端点集合,其轨道在虚方向上趋于无穷。
We prove that the rational Hilbert space, known as the Erdős space , surfaces in complex dynamics via iteration of . More precisely, is topologically equivalent to the set of endpoints of the Julia set whose orbits tend to infinity in the imaginary direction.