{"title":"土壤碳有效性驱动微生物氮利用效率对变暖的深度依赖响应","authors":"Qiufang Zhang, Wenkuan Qin, Xiaojie Li, Jiguang Feng, Yuehmin Chen, Zhenhua Zhang, Jin-Sheng He, Andreas Richter, Joshua P. Schimel, Biao Zhu","doi":"10.1111/gcb.70490","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Microbial nitrogen use efficiency (NUE) describes the partitioning of organic N between microbial growth and N mineralization, which is crucial for assessing soil N retention. However, how warming affects NUE along soil depth remains unclear. Based on a whole-soil-profile warming experiment (0 to 100 cm, +4°C) on the Qinghai-Tibetan Plateau, combined with <sup>18</sup>O and <sup>15</sup>N isotope labeling techniques, we determined soil carbon (C) composition, edaphic properties, and microbial parameters. The results showed that NUE declined with soil depth in both control and warming treatments, driven by microbial C limitation. The response of NUE to warming varied with soil depth. Warming reduced topsoil (0–30 cm) microbial N growth, ultimately leading to a decrease in NUE, but had no effect in deep soils (30–100 cm). Jointly, these findings highlight that warming may exacerbate soil N loss in topsoil, and that maintaining microbial C and N availability could be a key strategy for preserving microbial N sequestration under warming conditions.</p>\n </div>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"31 9","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soil Carbon Availability Drives Depth-Dependent Responses of Microbial Nitrogen Use Efficiency to Warming\",\"authors\":\"Qiufang Zhang, Wenkuan Qin, Xiaojie Li, Jiguang Feng, Yuehmin Chen, Zhenhua Zhang, Jin-Sheng He, Andreas Richter, Joshua P. Schimel, Biao Zhu\",\"doi\":\"10.1111/gcb.70490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Microbial nitrogen use efficiency (NUE) describes the partitioning of organic N between microbial growth and N mineralization, which is crucial for assessing soil N retention. However, how warming affects NUE along soil depth remains unclear. Based on a whole-soil-profile warming experiment (0 to 100 cm, +4°C) on the Qinghai-Tibetan Plateau, combined with <sup>18</sup>O and <sup>15</sup>N isotope labeling techniques, we determined soil carbon (C) composition, edaphic properties, and microbial parameters. The results showed that NUE declined with soil depth in both control and warming treatments, driven by microbial C limitation. The response of NUE to warming varied with soil depth. Warming reduced topsoil (0–30 cm) microbial N growth, ultimately leading to a decrease in NUE, but had no effect in deep soils (30–100 cm). Jointly, these findings highlight that warming may exacerbate soil N loss in topsoil, and that maintaining microbial C and N availability could be a key strategy for preserving microbial N sequestration under warming conditions.</p>\\n </div>\",\"PeriodicalId\":175,\"journal\":{\"name\":\"Global Change Biology\",\"volume\":\"31 9\",\"pages\":\"\"},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Change Biology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gcb.70490\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcb.70490","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
Soil Carbon Availability Drives Depth-Dependent Responses of Microbial Nitrogen Use Efficiency to Warming
Microbial nitrogen use efficiency (NUE) describes the partitioning of organic N between microbial growth and N mineralization, which is crucial for assessing soil N retention. However, how warming affects NUE along soil depth remains unclear. Based on a whole-soil-profile warming experiment (0 to 100 cm, +4°C) on the Qinghai-Tibetan Plateau, combined with 18O and 15N isotope labeling techniques, we determined soil carbon (C) composition, edaphic properties, and microbial parameters. The results showed that NUE declined with soil depth in both control and warming treatments, driven by microbial C limitation. The response of NUE to warming varied with soil depth. Warming reduced topsoil (0–30 cm) microbial N growth, ultimately leading to a decrease in NUE, but had no effect in deep soils (30–100 cm). Jointly, these findings highlight that warming may exacerbate soil N loss in topsoil, and that maintaining microbial C and N availability could be a key strategy for preserving microbial N sequestration under warming conditions.
期刊介绍:
Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health.
Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.