可持续城市交通预测的交通和天气数据融合

IF 1.8 4区 工程技术 Q2 ENGINEERING, CIVIL
Aram Nasser, Vilmos Simon
{"title":"可持续城市交通预测的交通和天气数据融合","authors":"Aram Nasser,&nbsp;Vilmos Simon","doi":"10.1155/atr/1580010","DOIUrl":null,"url":null,"abstract":"<p>Anticipating traffic patterns is a vital component in efficiently managing traffic within smart cities. This proactive approach contributes to alleviating traffic congestion, promoting environmental preservation, reducing commute times, and strengthening overall safety measures. Numerous studies have verified that external factors, such as weather conditions, exert an influence on traffic patterns. Therefore, utilizing these factors as supplementary variables can improve traffic prediction accuracy. This paper presents a novel prediction model called the multi-input sequential multihead attention (MI-SMHA) model. This model integrates weather condition information into traffic prediction tasks, aiming to enhance prediction accuracy and computational efficiency. It utilizes advanced techniques from sequential modeling and attention mechanisms, specifically tailored to handle traffic and weather data such as temperature, wind speed, precipitation, visibility, and humidity. This integration aims to leverage the complementary nature of weather conditions in forecasting traffic patterns, yet it remains flexible enough to be generalized to support a wide range of multivariate time series prediction tasks. Data from real-life traffic detectors are utilized to perform experiments and comparisons with two baseline models and three state-of-the-art models to validate and assess the efficiency of the proposed model. The MI-SMHA model was efficient and reliable in forecasting future traffic flow, significantly reducing errors compared to the other models.</p>","PeriodicalId":50259,"journal":{"name":"Journal of Advanced Transportation","volume":"2025 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/atr/1580010","citationCount":"0","resultStr":"{\"title\":\"Traffic and Weather Data Fusion for Traffic Prediction in Sustainable Cities\",\"authors\":\"Aram Nasser,&nbsp;Vilmos Simon\",\"doi\":\"10.1155/atr/1580010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Anticipating traffic patterns is a vital component in efficiently managing traffic within smart cities. This proactive approach contributes to alleviating traffic congestion, promoting environmental preservation, reducing commute times, and strengthening overall safety measures. Numerous studies have verified that external factors, such as weather conditions, exert an influence on traffic patterns. Therefore, utilizing these factors as supplementary variables can improve traffic prediction accuracy. This paper presents a novel prediction model called the multi-input sequential multihead attention (MI-SMHA) model. This model integrates weather condition information into traffic prediction tasks, aiming to enhance prediction accuracy and computational efficiency. It utilizes advanced techniques from sequential modeling and attention mechanisms, specifically tailored to handle traffic and weather data such as temperature, wind speed, precipitation, visibility, and humidity. This integration aims to leverage the complementary nature of weather conditions in forecasting traffic patterns, yet it remains flexible enough to be generalized to support a wide range of multivariate time series prediction tasks. Data from real-life traffic detectors are utilized to perform experiments and comparisons with two baseline models and three state-of-the-art models to validate and assess the efficiency of the proposed model. The MI-SMHA model was efficient and reliable in forecasting future traffic flow, significantly reducing errors compared to the other models.</p>\",\"PeriodicalId\":50259,\"journal\":{\"name\":\"Journal of Advanced Transportation\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/atr/1580010\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Transportation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/atr/1580010\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Transportation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/atr/1580010","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

预测交通模式是有效管理智慧城市交通的重要组成部分。这种积极主动的做法有助于缓解交通挤塞、促进环境保护、缩短通勤时间和加强整体安全措施。许多研究已经证实,外部因素,如天气条件,对交通模式产生影响。因此,利用这些因素作为补充变量可以提高流量预测的准确性。提出了一种新的多输入顺序多头注意(MI-SMHA)预测模型。该模型将天气状况信息整合到交通预测任务中,旨在提高预测精度和计算效率。它利用顺序建模和关注机制的先进技术,专门用于处理交通和天气数据,如温度、风速、降水、能见度和湿度。这种集成旨在利用天气条件在预测交通模式方面的互补性,但它仍然足够灵活,可以推广到支持广泛的多变量时间序列预测任务。利用来自真实交通探测器的数据进行实验,并与两个基线模型和三个最先进的模型进行比较,以验证和评估所提出模型的效率。与其他模型相比,MI-SMHA模型在预测未来交通流量方面有效可靠,显著降低了误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Traffic and Weather Data Fusion for Traffic Prediction in Sustainable Cities

Traffic and Weather Data Fusion for Traffic Prediction in Sustainable Cities

Anticipating traffic patterns is a vital component in efficiently managing traffic within smart cities. This proactive approach contributes to alleviating traffic congestion, promoting environmental preservation, reducing commute times, and strengthening overall safety measures. Numerous studies have verified that external factors, such as weather conditions, exert an influence on traffic patterns. Therefore, utilizing these factors as supplementary variables can improve traffic prediction accuracy. This paper presents a novel prediction model called the multi-input sequential multihead attention (MI-SMHA) model. This model integrates weather condition information into traffic prediction tasks, aiming to enhance prediction accuracy and computational efficiency. It utilizes advanced techniques from sequential modeling and attention mechanisms, specifically tailored to handle traffic and weather data such as temperature, wind speed, precipitation, visibility, and humidity. This integration aims to leverage the complementary nature of weather conditions in forecasting traffic patterns, yet it remains flexible enough to be generalized to support a wide range of multivariate time series prediction tasks. Data from real-life traffic detectors are utilized to perform experiments and comparisons with two baseline models and three state-of-the-art models to validate and assess the efficiency of the proposed model. The MI-SMHA model was efficient and reliable in forecasting future traffic flow, significantly reducing errors compared to the other models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Advanced Transportation
Journal of Advanced Transportation 工程技术-工程:土木
CiteScore
5.00
自引率
8.70%
发文量
466
审稿时长
7.3 months
期刊介绍: The Journal of Advanced Transportation (JAT) is a fully peer reviewed international journal in transportation research areas related to public transit, road traffic, transport networks and air transport. It publishes theoretical and innovative papers on analysis, design, operations, optimization and planning of multi-modal transport networks, transit & traffic systems, transport technology and traffic safety. Urban rail and bus systems, Pedestrian studies, traffic flow theory and control, Intelligent Transport Systems (ITS) and automated and/or connected vehicles are some topics of interest. Highway engineering, railway engineering and logistics do not fall within the aims and scope of JAT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信