Namshad Thekkethil, Hao Gao, Nicholas A. Hill, Xiaoyu Luo
{"title":"具有患者特异性参数化的多室达西流模型:多孔参数的非均质性和各向异性的影响","authors":"Namshad Thekkethil, Hao Gao, Nicholas A. Hill, Xiaoyu Luo","doi":"10.1002/cnm.70091","DOIUrl":null,"url":null,"abstract":"<p>Blood perfusion in cardiac tissues involves intricate interactions among vascular networks and tissue mechanics. Perfusion deficit is one of the leading causes of cardiac diseases, and modeling certain cardiac conditions that are clinically infeasible, invasive, or costly can provide valuable supplementary insights to aid clinicians. However, existing homogeneous perfusion models lack the complexity required for patient-specific simulations. In this study, we develop a computational framework for modeling perfusion using a multicompartment Darcy flow model with heterogeneous anisotropic perfusion that incorporates the nonlinear deformation and compliance of blood vessels with poroelastic parameters derived from realistic vascular data. Through numerical simulations and a comparison of pore pressure results obtained from the proposed model and the Poiseuille flow approach in a benchmark problem, we demonstrate that the heterogeneous anisotropic model outperforms homogeneous models in predicting perfusion, particularly by accurately capturing the spatial heterogeneity of the poroelastic parameters and the permeability transitions from large vessels to microvessels. Additionally, the proposed model successfully simulates patient-specific conditions, such as vessel blockages, highlighting its potential for personalized medical applications.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":"41 9","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnm.70091","citationCount":"0","resultStr":"{\"title\":\"Multicompartment Darcy Flow Model With Patient-Specific Parameterization: Effect of Heterogeneity and Anisotropy in Porous Parameters\",\"authors\":\"Namshad Thekkethil, Hao Gao, Nicholas A. Hill, Xiaoyu Luo\",\"doi\":\"10.1002/cnm.70091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Blood perfusion in cardiac tissues involves intricate interactions among vascular networks and tissue mechanics. Perfusion deficit is one of the leading causes of cardiac diseases, and modeling certain cardiac conditions that are clinically infeasible, invasive, or costly can provide valuable supplementary insights to aid clinicians. However, existing homogeneous perfusion models lack the complexity required for patient-specific simulations. In this study, we develop a computational framework for modeling perfusion using a multicompartment Darcy flow model with heterogeneous anisotropic perfusion that incorporates the nonlinear deformation and compliance of blood vessels with poroelastic parameters derived from realistic vascular data. Through numerical simulations and a comparison of pore pressure results obtained from the proposed model and the Poiseuille flow approach in a benchmark problem, we demonstrate that the heterogeneous anisotropic model outperforms homogeneous models in predicting perfusion, particularly by accurately capturing the spatial heterogeneity of the poroelastic parameters and the permeability transitions from large vessels to microvessels. Additionally, the proposed model successfully simulates patient-specific conditions, such as vessel blockages, highlighting its potential for personalized medical applications.</p>\",\"PeriodicalId\":50349,\"journal\":{\"name\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"volume\":\"41 9\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnm.70091\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cnm.70091\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnm.70091","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Multicompartment Darcy Flow Model With Patient-Specific Parameterization: Effect of Heterogeneity and Anisotropy in Porous Parameters
Blood perfusion in cardiac tissues involves intricate interactions among vascular networks and tissue mechanics. Perfusion deficit is one of the leading causes of cardiac diseases, and modeling certain cardiac conditions that are clinically infeasible, invasive, or costly can provide valuable supplementary insights to aid clinicians. However, existing homogeneous perfusion models lack the complexity required for patient-specific simulations. In this study, we develop a computational framework for modeling perfusion using a multicompartment Darcy flow model with heterogeneous anisotropic perfusion that incorporates the nonlinear deformation and compliance of blood vessels with poroelastic parameters derived from realistic vascular data. Through numerical simulations and a comparison of pore pressure results obtained from the proposed model and the Poiseuille flow approach in a benchmark problem, we demonstrate that the heterogeneous anisotropic model outperforms homogeneous models in predicting perfusion, particularly by accurately capturing the spatial heterogeneity of the poroelastic parameters and the permeability transitions from large vessels to microvessels. Additionally, the proposed model successfully simulates patient-specific conditions, such as vessel blockages, highlighting its potential for personalized medical applications.
期刊介绍:
All differential equation based models for biomedical applications and their novel solutions (using either established numerical methods such as finite difference, finite element and finite volume methods or new numerical methods) are within the scope of this journal. Manuscripts with experimental and analytical themes are also welcome if a component of the paper deals with numerical methods. Special cases that may not involve differential equations such as image processing, meshing and artificial intelligence are within the scope. Any research that is broadly linked to the wellbeing of the human body, either directly or indirectly, is also within the scope of this journal.