通过椭圆曲线的Gromov-Witten理论得到Faber的交点数

IF 0.9 3区 数学 Q2 MATHEMATICS
Xavier Blot, Sergey Shadrin, Ishan Jaztar Singh
{"title":"通过椭圆曲线的Gromov-Witten理论得到Faber的交点数","authors":"Xavier Blot,&nbsp;Sergey Shadrin,&nbsp;Ishan Jaztar Singh","doi":"10.1112/blms.70117","DOIUrl":null,"url":null,"abstract":"<p>The goal of this very short note is to give a new proof of Faber's formula for the socle intersection numbers in the tautological ring of <span></span><math>\n <semantics>\n <msub>\n <mi>M</mi>\n <mi>g</mi>\n </msub>\n <annotation>$\\mathcal {M}_g$</annotation>\n </semantics></math>. This new proof exhibits a new beautiful tautological relation that stems from the recent work of Oberdieck–Pixton on the Gromov–Witten theory of the elliptic curve via a refinement of their argument, and some straightforward computation with the double ramification cycles that enters the recursion relations for the Hamiltonians of the KdV hierarchy.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 9","pages":"2698-2707"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70117","citationCount":"0","resultStr":"{\"title\":\"Faber's socle intersection numbers via Gromov–Witten theory of elliptic curve\",\"authors\":\"Xavier Blot,&nbsp;Sergey Shadrin,&nbsp;Ishan Jaztar Singh\",\"doi\":\"10.1112/blms.70117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The goal of this very short note is to give a new proof of Faber's formula for the socle intersection numbers in the tautological ring of <span></span><math>\\n <semantics>\\n <msub>\\n <mi>M</mi>\\n <mi>g</mi>\\n </msub>\\n <annotation>$\\\\mathcal {M}_g$</annotation>\\n </semantics></math>. This new proof exhibits a new beautiful tautological relation that stems from the recent work of Oberdieck–Pixton on the Gromov–Witten theory of the elliptic curve via a refinement of their argument, and some straightforward computation with the double ramification cycles that enters the recursion relations for the Hamiltonians of the KdV hierarchy.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 9\",\"pages\":\"2698-2707\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70117\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70117\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70117","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

这篇短文的目的是给出M $\mathcal {M}_g$的同义环上的交点数的Faber公式的一个新的证明。这个新的证明展示了一个新的美丽的重言式关系,它源于Oberdieck-Pixton最近对椭圆曲线的Gromov-Witten理论的研究,通过对他们的论证的改进,以及一些直接的计算,这些计算进入了KdV层次的哈密顿量的递推关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Faber's socle intersection numbers via Gromov–Witten theory of elliptic curve

Faber's socle intersection numbers via Gromov–Witten theory of elliptic curve

Faber's socle intersection numbers via Gromov–Witten theory of elliptic curve

The goal of this very short note is to give a new proof of Faber's formula for the socle intersection numbers in the tautological ring of M g $\mathcal {M}_g$ . This new proof exhibits a new beautiful tautological relation that stems from the recent work of Oberdieck–Pixton on the Gromov–Witten theory of the elliptic curve via a refinement of their argument, and some straightforward computation with the double ramification cycles that enters the recursion relations for the Hamiltonians of the KdV hierarchy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信