{"title":"通过椭圆曲线的Gromov-Witten理论得到Faber的交点数","authors":"Xavier Blot, Sergey Shadrin, Ishan Jaztar Singh","doi":"10.1112/blms.70117","DOIUrl":null,"url":null,"abstract":"<p>The goal of this very short note is to give a new proof of Faber's formula for the socle intersection numbers in the tautological ring of <span></span><math>\n <semantics>\n <msub>\n <mi>M</mi>\n <mi>g</mi>\n </msub>\n <annotation>$\\mathcal {M}_g$</annotation>\n </semantics></math>. This new proof exhibits a new beautiful tautological relation that stems from the recent work of Oberdieck–Pixton on the Gromov–Witten theory of the elliptic curve via a refinement of their argument, and some straightforward computation with the double ramification cycles that enters the recursion relations for the Hamiltonians of the KdV hierarchy.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 9","pages":"2698-2707"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70117","citationCount":"0","resultStr":"{\"title\":\"Faber's socle intersection numbers via Gromov–Witten theory of elliptic curve\",\"authors\":\"Xavier Blot, Sergey Shadrin, Ishan Jaztar Singh\",\"doi\":\"10.1112/blms.70117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The goal of this very short note is to give a new proof of Faber's formula for the socle intersection numbers in the tautological ring of <span></span><math>\\n <semantics>\\n <msub>\\n <mi>M</mi>\\n <mi>g</mi>\\n </msub>\\n <annotation>$\\\\mathcal {M}_g$</annotation>\\n </semantics></math>. This new proof exhibits a new beautiful tautological relation that stems from the recent work of Oberdieck–Pixton on the Gromov–Witten theory of the elliptic curve via a refinement of their argument, and some straightforward computation with the double ramification cycles that enters the recursion relations for the Hamiltonians of the KdV hierarchy.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 9\",\"pages\":\"2698-2707\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70117\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70117\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70117","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Faber's socle intersection numbers via Gromov–Witten theory of elliptic curve
The goal of this very short note is to give a new proof of Faber's formula for the socle intersection numbers in the tautological ring of . This new proof exhibits a new beautiful tautological relation that stems from the recent work of Oberdieck–Pixton on the Gromov–Witten theory of the elliptic curve via a refinement of their argument, and some straightforward computation with the double ramification cycles that enters the recursion relations for the Hamiltonians of the KdV hierarchy.