{"title":"均匀半导体靶中少数载流子复合的两个通道","authors":"E. V. Seregina, M. A. Stepovich, M. N. Filippov","doi":"10.1134/S1027451025700624","DOIUrl":null,"url":null,"abstract":"<p>The process of nonstationary diffusion of nonequilibrium minority charge carriers, which is realized after the termination of the effect of an electron probe on a homogeneous semiconductor target, is considered by mathematical modeling methods. For a low-energy (up to 10 keV) electron probe, a mathematical model of two-dimensional diffusion of charge carriers in a homogeneous semiconductor material is proposed, taking into account the dynamics of changes in target temperature after the termination of electron irradiation of the probe. When calculating the dependence of the density of nonequilibrium minority charge carriers generated by an electron probe on the coordinates, a mathematical model of energy loss by primary electrons was used, taking into account the separate contribution of electrons that experienced small-angle scattering and absorbed into the target and the contribution of backscattered electrons that experienced a small number of scattering at large angles and left the target. The differential equation of thermal conductivity is solved approximately using the projection method. The quantitative description of the temperature dependences of the effective lifetime and the diffusion coefficient of the generated charge carriers was carried out taking into account the available results of experimental electron probe studies of cathodoluminescence of homogeneous monocrystalline gallium nitride. Model calculations have been performed for the diffusion of excitons in homogeneous monocrystalline gallium nitride in the presence of two independent recombination channels of nonequilibrium charge carriers.</p>","PeriodicalId":671,"journal":{"name":"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques","volume":"19 2","pages":"427 - 432"},"PeriodicalIF":0.4000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two Channels of Minority Charge Carriers Recombination in a Homogeneous Semiconductor Target\",\"authors\":\"E. V. Seregina, M. A. Stepovich, M. N. Filippov\",\"doi\":\"10.1134/S1027451025700624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The process of nonstationary diffusion of nonequilibrium minority charge carriers, which is realized after the termination of the effect of an electron probe on a homogeneous semiconductor target, is considered by mathematical modeling methods. For a low-energy (up to 10 keV) electron probe, a mathematical model of two-dimensional diffusion of charge carriers in a homogeneous semiconductor material is proposed, taking into account the dynamics of changes in target temperature after the termination of electron irradiation of the probe. When calculating the dependence of the density of nonequilibrium minority charge carriers generated by an electron probe on the coordinates, a mathematical model of energy loss by primary electrons was used, taking into account the separate contribution of electrons that experienced small-angle scattering and absorbed into the target and the contribution of backscattered electrons that experienced a small number of scattering at large angles and left the target. The differential equation of thermal conductivity is solved approximately using the projection method. The quantitative description of the temperature dependences of the effective lifetime and the diffusion coefficient of the generated charge carriers was carried out taking into account the available results of experimental electron probe studies of cathodoluminescence of homogeneous monocrystalline gallium nitride. Model calculations have been performed for the diffusion of excitons in homogeneous monocrystalline gallium nitride in the presence of two independent recombination channels of nonequilibrium charge carriers.</p>\",\"PeriodicalId\":671,\"journal\":{\"name\":\"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques\",\"volume\":\"19 2\",\"pages\":\"427 - 432\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1027451025700624\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1027451025700624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Two Channels of Minority Charge Carriers Recombination in a Homogeneous Semiconductor Target
The process of nonstationary diffusion of nonequilibrium minority charge carriers, which is realized after the termination of the effect of an electron probe on a homogeneous semiconductor target, is considered by mathematical modeling methods. For a low-energy (up to 10 keV) electron probe, a mathematical model of two-dimensional diffusion of charge carriers in a homogeneous semiconductor material is proposed, taking into account the dynamics of changes in target temperature after the termination of electron irradiation of the probe. When calculating the dependence of the density of nonequilibrium minority charge carriers generated by an electron probe on the coordinates, a mathematical model of energy loss by primary electrons was used, taking into account the separate contribution of electrons that experienced small-angle scattering and absorbed into the target and the contribution of backscattered electrons that experienced a small number of scattering at large angles and left the target. The differential equation of thermal conductivity is solved approximately using the projection method. The quantitative description of the temperature dependences of the effective lifetime and the diffusion coefficient of the generated charge carriers was carried out taking into account the available results of experimental electron probe studies of cathodoluminescence of homogeneous monocrystalline gallium nitride. Model calculations have been performed for the diffusion of excitons in homogeneous monocrystalline gallium nitride in the presence of two independent recombination channels of nonequilibrium charge carriers.
期刊介绍:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques publishes original articles on the topical problems of solid-state physics, materials science, experimental techniques, condensed media, nanostructures, surfaces of thin films, and phase boundaries: geometric and energetical structures of surfaces, the methods of computer simulations; physical and chemical properties and their changes upon radiation and other treatments; the methods of studies of films and surface layers of crystals (XRD, XPS, synchrotron radiation, neutron and electron diffraction, electron microscopic, scanning tunneling microscopic, atomic force microscopic studies, and other methods that provide data on the surfaces and thin films). Articles related to the methods and technics of structure studies are the focus of the journal. The journal accepts manuscripts of regular articles and reviews in English or Russian language from authors of all countries. All manuscripts are peer-reviewed.